
Saving the World Wide Web
from Vulnerable JavaScript

Salvatore Guarnieri
IBM Watson Research Center
and University of Washington

sguarni@us.ibm.com

Marco Pistoia
IBM Watson Research Center

pistoia@us.ibm.com

Omer Tripp
IBM Software Group

and Tel Aviv University
omert@il.ibm.com

Julian Dolby
IBM Watson Research Center

dolby@us.ibm.com

Stephen Teilhet
IBM Software Group

steilhet@us.ibm.com

Ryan Berg
IBM Software Group

ryan.berg@us.ibm.com

ABSTRACT
JavaScript is the most popular client-side scripting language for
Web applications. Exploitable JavaScript code exposes end users
to integrity and confidentiality violations. Client-side vulnerabili-
ties can cost an enterprise money and reputation, and cause serious
damage to innocent users of the Web application. In spite of all this,
recent research in the area of information-flow security has focused
more on other languages that are more suitable for server-side pro-
gramming, such as Java.

Static analysis of JavaScript code is very challenging due to the
dynamic nature of the language. This paper presents ACTARUS, a
novel, product-quality static taint analysis for JavaScript that scales
to large programs and soundly models all the JavaScript constructs
with the exception of reflective calls. This paper discusses the ex-
perimental results obtained by running ACTARUS on a collection
of 9,726 Web pages obtained by crawling the 50 most visited Web
sites worldwide as well as 19 other popular Web sites. The results
expose 526 vulnerabilities in 11 sites. Those vulnerabilities, if ex-
ploited, can allow malicious JavaScript code execution.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification; D.2.5
[Software Engineering]: Testing and Debugging

General Terms
Static Analysis, Security, Abstract Interpretation

Keywords
Information Flow, Abstract Interpretation, JavaScript

1. INTRODUCTION
In today’s world of Rich Internet Applications (RIAs), mashups,

and Asynchronous JavaScript And XML (AJAX) applications, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

one common denominator is JavaScript—an object-oriented lan-
guage that allows Web pages to be augmented with executable code.
The use of JavaScript has become a standard among all Web de-
velopers due to its ease of use, flexibility and power. In fact, un-
like Java applets, programs written in JavaScript do not need to
be pre-compiled, do not require the installation of a plugin, can
be tested quickly, and allow for easy programmatic manipulation
of HTML Document Object Model (DOM) elements. For these
reasons, JavaScript has effectively supplanted Java on the client
side, to the point that 98 out of the 100 most visited Web sites use
JavaScript for client-side programming according to Alexa.1 As a
consequence, JavaScript has gained the attention of researchers and
developers worldwide.

The success of JavaScript has been fueled by the migration of
application code from the server to the client. Older Web appli-
cations implemented very little logic on the client side. With the
newer Web 2.0 style of applications, sources of tainted data can
originate from a myriad of locations, such as Really Simple Syn-
dication (RSS) feeds, Web services, local or remote databases and
files, and AJAX callbacks. This is mainly due to the flexibility and
power of the XMLHttpRequest object, on which all AJAX code
is based. The downside of placing more code on the client is that
this provides attackers with a much deeper view of the application’s
internals, and exposes a larger surface that attackers can exploit.

Since the inception of JavaScript, its security implications have
been a concern. The first problem to address was to ensure that
JavaScript programs obeyed the same-origin policy, which allows
scripts originating from the same Web site to access each other’s
properties and functions, but prevents such access to scripts origi-
nating from different sites. Attackers, however, have been able to
bypass the same-origin policy by injecting specially crafted mali-
cious scripts into otherwise legitimate Web pages. Once injected,
a malicious script can perform any number of exploits; essentially,
attackers have the full power of JavaScript at their disposal. The
consequences for the Web site can be very serious, and may include
Web-site defacement, breakage of integrity and confidentiality, and
complete identity theft. Thus, it has become imperative for enter-
prises to guarantee that their Web applications are secured against
attacks not only on the server side, but on the client side as well.

In the past few years, several research directions in the area of
JavaScript security have been pursued, including static analysis [6,
17], dynamic enforcement [36, 41], a combination of both static
and dynamic analysis [36], and code rewriting [21]. Sound and
scalable static analysis is an especially attractive solution for find-

1http://alexa.com.

ing security vulnerabilities, particularly for developers, deployers,
auditors and end users, who want to be reassured that the code they
write, install, inspect and execute, respectively, is free of security
problems. Unfortunately, many of the published approaches do not
immediately apply to the security requirements of industrial Web
applications because they are not sufficiently precise and have not
been shown to scale to the size of production-level programs. Fur-
thermore, static analysis is much more challenging for JavaScript
than for more traditional languages, such as Java and .NET [35,
20]. Characteristics of JavaScript that contribute to this difficulty
include prototype-chain property lookups, lexical-scoping rules for
variable resolution, reflective property accesses, function pointers,
and the fact that the properties and prototype chain of any object
can be modified [27].

This paper presents ACTARUS, the first JavaScript static security
analysis that addresses all the challenges listed above. Except for
the fact that it does not model reflective calls (such as eval) and
the with construct, ACTARUS is sound; it does not miss any of
the security problems in the applications it analyzes. Furthermore,
ACTARUS scales to large programs and automatically detects the
following security vulnerabilities, which the Open Web Applica-
tion Security Project (OWASP)2 considers to be among the top ten
security vulnerabilities in today’s Web applications:
• Injection, the most common vulnerability: It occurs any time an

attacker succeeds in sending untrusted data to an interpreter as
part of a command or query, causing the interpreter to execute
unintended commands.
• Cross-Site Scripting (XSS), the second most frequent vulnerabil-

ity: If an attacker injects a malicious script into some text that is
supposed to be displayed on other people’s browsers, that script
will not be rendered as regular plaintext, but executed. The con-
sequences of this attack can be very serious. Its variant, DOM-
based XSS, exploits the ability of JavaScript code to access the
DOM. In DOM-based XSS, the attacker injects malicious code
into the DOM causing that code to be executed on the victim’s
browser. DOM-based XSS completely circumvents the server
side and bypasses any validation routine deployed on the server.
• Unvalidated redirects and forwards, the tenth most widespread

form of attack: They exploit unchecked Uniform Resource Loca-
tors (URLs) to redirect the user to unintended Web sites, perform
unauthorized AJAX requests, and connect to servers using ports
or protocols that are different from the expected ones.

Each of these vulnerabilities can be cast as a problem in which
tainted information from an untrusted source propagates, through
data and/or control flow, to a high-integrity sink without being prop-
erly endorsed (i.e., corrected or validated) by a sanitizer. ACTARUS
is equipped with a rich set of “rules”, each rule being a triplet of the
form (Src,Snk ,Snt), where Src, Snk and Snt are sets of related
sources, sinks and sanitizers, respectively. ACTARUS statically ver-
ifies that there is no flow from any source to any sink that has not
been intercepted by a sanitizer in the same rule.

1.1 Research Contributions
This paper makes the following contributions:

1. A novel taint-analysis algorithm. ACTARUS employs a novel
combination of various static-analysis abstractions for modeling
taint propagation. The result is a new taint-propagation algo-
rithm that is infinitely context-sensitive up to recursion.

2. Sound model of JavaScript language constructs. Being tar-
geted for industrial use, ACTARUS soundly models constructs of
the JavaScript language that have been often eluded in previous

2http://owasp.org.

work, such as prototype-chain property lookups and reflective
property accesses.

3. A complete set of rules. Unlike other languages, where sources,
sinks and sanitizers are just methods of objects of well-known
types [35, 20], in JavaScript sources and sinks can also be fields.
To complicate things, statically locating those members is diffi-
cult because the types of the objects holding them are not stati-
cally known. ACTARUS solves this problem by having its rules
spell out the precise programmatic paths of retrieval that lead
to objects containing those members, and by statically matching
those access paths during the analysis.

4. Implementation and evaluation. We have implemented AC-
TARUS on top of the T. J. Watson Libraries for Analysis (WALA)
open-source framework.3 The core algorithm of ACTARUS is
currently used in a commercial product.4 In this paper, we present
implementation details of ACTARUS and the results of ACTARUS
on 9,726 Web pages obtained by crawling the top 50 most visited
Web sites according to Alexa as well as 19 other popular sites,
revealing 526 vulnerabilities on 11 sites. Those vulnerabilities
can allow malicious execution of JavaScript code.

5. Suite of microbenchmarks. We have also implemented an ex-
haustive suite of microbenchmarks—analogous to the SecuriBench
Micro suite5 for Java taint analysis—that expose all the chal-
lenges that a static taint analysis for JavaScript should address.
These include lexically scoped accesses, prototype lookups, call-
back functions, arguments array usage, string operations, inter-
procedural aliasing relations, sanitization, and DOM manipula-
tion. ACTARUS successfully passes all these benchmarks. We
are making the suite available to the scientific community to ad-
vance further research in this area.6

1.2 Paper Organization
This paper is organized as follows: Section 2 provides sam-

ple code illustrating the challenges lying in static taint analysis of
JavaScript programs. Section 3 details the static-analysis frame-
work employed by ACTARUS. Section 4 explains the ACTARUS
core taint-analysis algorithm. Section 5 presents the experimental
results obtained by analyzing 9,726 popular Web pages. Section 6
compares ACTARUS with previous work. Finally, Section 7 con-
cludes this paper.

2. MOTIVATING EXAMPLES
To illustrate the security issues that ACTARUS can detect, we

present two sample programs that demonstrate them. To make clear
how the code works, we first introduce briefly the framework for
client-side Web code; that is, how the code integrates into Web
content and how it interacts with that content. After that, we present
the sample programs themselves.

2.1 Web Programming Model
At the most basic level, code is included on Web pages using

the <SCRIPT> tag; all text within such a tag is interpreted as ex-
ecutable code by the browser. In addition, the tag can have a src
attribute, the value of which is a URL indicating a file of code to
be loaded. In general, the tag can also have a language attribute

3http://wala.sourceforge.net.
4IBM Rational AppScan Source Edition, http://ibm.com/
software/rational/products/appscan/source/.
5http://suif.stanford.edu/~livshits/work/
securibench-micro/.
6https://researcher.ibm.com/researcher/view_
page.php?id=1598.

denoting the language in which the code is written; however, the
only widely supported such language is JavaScript, so we focus on
that. Code included within <SCRIPT> tags is executed when the
page is loaded; this typically involves defining functions for later
use and initializing data structures. The functions defined are later
invoked in two ways:
1. In callbacks for a range of HTML elements, such as onclick

and onmouseover
2. In href elements that denote not a URL as usual, but rather

code specified as "javascript: ..."
The code in such fragments and the script code within <SCRIPT>
tags are all in the same scope, so the fragments can make use of,
and change, the definitions in the script code.

The code on a Web page can interact with the page itself via the
DOM, which is accessible as the variable document. The DOM
provides Application Programming Interfaces (APIs) for finding,
creating and changing DOM elements, so the code can manipulate
and query the page in arbitrary ways. For instance, a common use
of the APIs is to extract form values entered by the user. How-
ever, making large-scale changes to the page by altering HTML
elements individually can be cumbersome, and so the document
also provides two APIs for wholesale modification:
1. innerText, which can be used to set the content of a given

DOM node to be the literal text provided.
2. innerHTML, which can be used to set the content of a given

DOM node to be the DOM subtree obtained by parsing the text
provided as HTML.

Both these APIs, when setting the content of a given DOM node,
have also the effect of replacing any children the node might cur-
rently have.

2.2 Sample Programs
The code samples in this section bring together several of the

most common and crucial hurdles faced by static taint-analysis en-
gines for JavaScript. Designed for expository purposes, they illus-
trate the challenge of tracking reflective property accesses, aliasing
relations, prototype-chain property lookups, lexical scoping rules
for variable resolution and function pointers, while maintaining a
high signal-to-noise ratio.

The HTML page of Figure 1 contains two div elements, with
IDs d1 and d2, respectively. The scenario depicted in this example
assumes that the text in the div element with ID d2 comes from an
untrusted source. In fact, it appears that an attacker has tried to in-
ject inside the div element with ID d2 the JavaScript code shown
in Figure 2. However, while forming the HTML page and sending
it to the client, the server must have correctly sanitized that text
with server-side encoding. We can infer this by noticing, for exam-
ple, that characters < and > have been replaced with their HTML
encodings < and >, respectively, thereby transforming the
injected JavaScript code in the div element with ID d2 into non-
executable plaintext. The script inside the page, however, starts
executing as the page is loading, and as this example is going to
show, server-side sanitization may not be sufficient when code exe-
cutes on the client side. At line 11, the script gets the div element
with ID d1 and assigns it to variable el1. It then calls function
foo at line 23. Inside this function, the script gets the div ele-
ment with ID d2 at line 13 and assigns it to variable el2. Next,
it calls function bar at line 20. Inside bar, the script constructs
a new Element and assigns it to variable el3 at line 15. At this
point, el1, el2 and el3 are all in scope. At line 16, the value
held by el2.innerText, which is a tainted source, gets sani-
tized with a call to encodeURIComponent. Therefore, the call
to sink method document.write at line 17 is safe. Conversely,

1: <html><head><title>Welcome!</title></head><body>
2: <div id="d1"></div>
3: <div id="d2">
4: <b onMouseOver=’alert(1);’>
5: Attack Me
6: </div>
7: <script>
8: function Element() {
9: this.innerText = "http://somesite.com";
10: }
11: var el1 = document.getElementById("d1");
12: function foo() {
13: var el2 = document.getElementById("d2");
14: function bar() {
15: var el3 = new Element();
16: var s = encodeURIComponent(el2.innerText);
17: document.write(s); // sanitized
18: el1.innerHTML = el2.innerText; // violation
19: document.location = el3.innerText; // benign
20: }
21: bar();
22: }
23: foo();
24: function baz(a, b) {
25: a.f = document.URL;
26: document.write(b.f); // violation
27: }
28: var x = new Object();
29: baz(x, x);
30: </script>
31: <h1>Welcome to our system</h1></body></html>

Figure 1: example_01.html Program

<b onMouseOver=’alert(1);’>Attack Me

Figure 2: Code Injected in HTML Page of Figure 1

the assignment of tainted source el2.innerText to sink field
el1.innerHTML at line 18 is unsafe because no sanitization has
taken place. The problem here is that el1.innerHTML gets as-
signed the value held by el2.innerText, which is the text dis-
played by the browser in the div element with ID d2. This is ex-
actly the text shown in Figure 2. Therefore, the malicious JavaScript
code that the server had initially transformed into plaintext is now
reinterpreted as JavaScript executable code because it is being as-
signed to the innerHTML field of an HTML element.

Interestingly, the assignment of el3.innerText to sink field
document.location at line 19 is safe because el3 is an ob-
ject implementing function Element, defined at lines 8-10. Such
function, coincidentally, contains an innerText field, but this is
not a tainted source since the object that holds it, unlike el1 and
el2, is not an HTML element. This example has demonstrated that
the challenges that an analysis must face when scanning JavaScript
applications include resolving lexically scoped variables, account-
ing for sanitization, and recognizing the programmatic paths of
retrieval leading to security-sensitive fields of actual HTML ele-
ments, while disambiguating such fields from identically named
fields in other functions.

A separate vulnerability exposed by the code in Figure 1 appears
at line 26, where a call to sink method document.write is per-
formed with parameter b.f. At line 25, the value of source field
document.URL is assigned to a.f. Static analyzers that do not
account for inter-procedural alias relations may fail to recognize
that a.f and b.f actually point to the same object via the baz(x,
x) call at line 29 and, as a consequence, the DOM-based XSS
vulnerability at lines 25-26 may remain undetected. Though some-
what contrived, the code sample of Figure 1 exposes salient features
of modern JavaScript Web applications. In particular, JavaScript
client code often gives rise to non-trivial aliasing relations, which
require complex inter-procedural alias analysis to be resolved.

1: <html><head><title>Welcome!</title></head><body>
2: <script>
3: function A() {
4: this.f = new Object();
5: }
6: var a = new A();
7: a.f = document.URL;
8: function B() { }
9: B.prototype = a;
10: var b = new B();
11: var doc = document;
12: var w = "wr" + "ite";
13: doc[w](b.f); // violation
14: </script>
15: <h1>Welcome to our system</h1></body></html>

Figure 3: example_02.html Program

The HTML code of Figure 3 shows a different set of challenges,
which include modeling prototype-chain property lookups and re-
flective property accesses that involves string manipulations. At
lines 3-5, function A is defined. Object a is created at line 6. At line
8, function B is defined, and object b is instantiated al line 9 with a
call to the constructor of B. Such an object does not have a field f
explicitly declared. Therefore, referencing b.f as at line 13 causes
a prototype-chain property lookup, which gets resolved as a.f
since a was declared to be B’s prototype at line 9. Object a does
have a field f, which points to the tainted value document.URL
as per the instruction at line 7. A static security analysis, at this
point, should detect that the instruction at line 13 is a vulnerability
because variable doc is an alias of document as per line 11, and
reflective property access doc[w] gets resolved into a reference
to sink method document.write as per line 12. Resolving this
property access requires also tracking string constants and model-
ing string concatenations.

Sound and precise analysis of such codes should not only con-
sider all these challenges, but also be sensitive to security concerns.
This includes awareness of the type of sanitization performed on
the input vis-a-vis the sinks using it. A solid solution to the chal-
lenges in these motivating examples is key for effective analysis of
real-world JavaScript Web applications.

3. CALL GRAPH / POINTER ANALYSIS
Before performing taint analysis on a program, ACTARUS builds

a static representation of the program, consisting of a call graph and
a pointer analysis [15]. This section describes how the foundation
of this static-analysis infrastructure and how the basic challenges
were overcome. Section 4 will explain how ACTARUS lifts this
infrastructure to perform an effective taint analysis of JavaScript
Web applications.

ACTARUS is based on the assumption that taint analysis is a
demand-driven problem. Ideally, the analysis could simply track
flows originating from tainted sources, and there would not be a
need for a complete call graph, but in order to identify statically
the sources reachable from the program entry points and the inter-
procedural alias relations between tainted variables, a complete call
graph and its associated pointer analysis are needed.

Since JavaScript uses function pointers and lacks a class hierar-
chy, inexpensive call-graph-construction algorithms based on Class
Hierarchy Analysis (CHA) [8] or Rapid Type Analysis (RTA) [3]
are not viable solutions. Therefore, ACTARUS uses Andersen’s
analysis [1] to combine pointer-analysis and call-graph construc-
tion and to abstract run-time objects into allocation sites. The very
dynamic semantics of JavaScript, however, requires some adap-
tation of standard techniques. Some aspects of JavaScript, such
as first-class functions, are handled very naturally; indeed, much

of the pioneering work on this combined analysis was done for
Scheme [32]. Nevertheless, some aspects of JavaScript are hard to
model directly in a static way, and require some special treatment,
as explained in the remainder of this section.

3.1 Prototypes
JavaScript uses prototypes rather than object-oriented inheritance.

In this mechanism, an object will traverse its prototype pointer
to look for properties that it itself does not have. We model this
explicitly in the Intermediate Representation (IR) for JavaScript.
More specifically, each such property access, e.g., b = a.f
gets translated through an Abstract Syntax Tree (AST) rewrite into
a loop using non-standard prototype notation that ACTARUS under-
stands, before generating the actual IR, as shown in Figure 4.

1: var x = a;
2: do {
3: b = x.f;
4: x = x.__proto__;
5: } while (!defined(b));

Figure 4: Encoding of Prototype-chain Property Lookup

On the other hand, assignments of properties never traverse the
prototype pointers; if a value is assigned to a property that does not
exist, a new property is created, and no prototype-chain property
lookup is performed. Thus, assignment of properties are modeled
directly as property-write IR nodes.

3.2 Object Creations
Although a new instruction in JavaScript looks syntactically like

a new in C++ or Java, its semantics is very dynamic, since the
argument is a variable rather than a constant. Therefore, the effect
of new X can depend upon what value X takes on during execution.
For example, Figure 5 shows code that creates different kinds of
objects depending on a given condition b.

1: if (b) {
2: X = Object;
3: } else {
4: X = Array;
5: }
6: y = new X(7);

Figure 5: Dynamic Semantics of new Instructions

To handle such dynamism, we model new as a special function
property on objects, and so a new expression becomes a first-class
function call on its argument.

Furthermore, even for a specific object, the object-allocation se-
mantics of JavaScript can be very dynamic. For instance, the mean-
ing of the allocation of an Array depends upon how many and
what types of arguments are provided. If there is just one argument
of Number type, then an array of the specified size is created; in
all other cases, the arguments are the initial contents of the array.

Thus, we rely on custom dispatch to direct new expressions to
stub methods that implement the right semantics based on the target
object, and the number and types of arguments. Since this is a
static analysis, the system may end up conservatively adding calls
to multiple methods in cases like the one in Figure 5, where the
target is ambiguous.

One complication of this approach is that now, any actual object-
creation is a function-call away from the syntactic creation site in
the original code. Thus, in order to get per-creation-site object
names, we use a level of calling-context sensitivity (1-CFA [15])
when analyzing these special constructor functions, and a level of
call strings for object names (1-1-CFA [15]).

3.3 Reflective Property Accesses
An issue that occurs in other languages as well, but is very promi-

nent in JavaScript, is the use of first-class property names, which
allow for expressions of the form a[b] = c and c = a[b],
where b is a variable. In many idioms, b refers to either a sin-
gle or a small number of string constants. In ACTARUS, we use a
precise model of string constants in which a different abstract ob-
ject is allocated for each specific constant. We also model string
concatenation (the + operator at the source level) by creating new
string constants when appropriate.

3.4 Lexical Scoping
JavaScript features lexical scoping, allowing variables from a

function to be accessed and modified by functions declared inside
it. For instance, in the code of Figure 1, bar refers to variable el2,
which was declared in foo.

ACTARUS represents the variable of a program in Static Single
Assignment (SSA) form [7]. SSA takes a program and transforms
it into an intermediate representation in which every single variable
is assigned only once. This is achieved by taking the existing vari-
ables in the program and splitting them into versions. In order to
preserve SSA form for lexically scoped variables, ACTARUS con-
verts them to SSA form as usual, but dependency information is
recorded so that the SSA representation can be updated if actual
assignments occur in called functions. We are going to see this in
an example.

1: function foo(a) {
2: var x = a;
3: function bar() {
4: var y = x + 5;
5: function baz() {
6: x = y + 1;
7: }
8: baz();
9: return x;
10: }
11: var t = bar();
12: return x + t;
13: }
14: var z = foo(3);

Figure 6: Program Performing Lexically Scoped Accesses

Figure 6 contains a program snippet that makes use of lexically
scoped accesses to variables x and y, which are declared in foo
and bar, respectively; x is read in bar and written in baz, while
variable y is read in baz. These lexical accesses are shown in
the code of Figure 7 with LexicalRead and LexicalWrite
statements, with each variable, in SSA form, labeled by its name
and defining function. During call-graph construction, when the
call to bar is encountered, the analysis records that the current
value of x is x_1, and the LexicalRead in bar is connected to
that value. Similarly, the call to baz links its LexicalRead to
y_1 and its LexicalWrite to x_3. When the LexicalWrite
is encountered, callers in the call stack get their SSA form updated
to indicate that there is a new definition of x, which generates x_3
in baz and x_4 in bar.

4. TAINT ANALYSIS
Recall that taint analysis comprises searching for flows of data

from untrusted points of input (the sources) to sensitive consumers
(the sinks). These flows are potential security issues unless each
flows passes through an operation that renders the data safe (a san-
itizer).

Given a call graphG, constructed as discussed in Section 3, AC-
TARUS’ taint-analysis algorithm comprises of two stages:

1: function foo(a) {
2: var x_1 = a;
3: function bar() {
4: x_2 = LexicalRead(x, foo);
5: var y_1 = x_2 + 5;
6: function baz() {
7: y_2 = LexicalRead(y, bar);
8: LexicalWrite(x, foo, y_2 + 1);
9: }
10: baz() [reads: y_1, writes: x_3];
11: return x_3;
12: }
13: var t_1 = bar() [reads: x_1, writes: x_4];
14: return x_4 + t_1;
15: }
16: var z_1 = foo(3);

Figure 7: Code of Figure 6 with Lexical-scoping Annotations

1. G is traversed to find sources, sinks and sanitizers in the code:
• Sources are either values obtained by reading certain fields or

values returned from calls to certain methods.
• Sinks can be either fields of certain objects or parameters of

given methods.
• Sanitizers are methods that transform the data they receive as

input into innocuous data that can be safely passed to sinks
without causing a security vulnerability.

Sources, sinks and sanitizers are partitioned into rules based on
the vulnerabilities they relate to. ACTARUS comes with a stan-
dard set of rules. Custom rules (containing, for example, user-
defined sanitizers) could be easily added to the default specifica-
tion if necessary.

2. An inter-procedural data-flow analysis is performed starting at
the sources to determine if there are tainted flows that reach sinks
without having been intercepted by sanitizers. The analysis is
seeded at the variables defined by source constructs.

As for Step 1 above, it should be observed that in JavaScript there
are no specific types. While in Java, for example, it is possible to
specify that the return value of any invocation of getParameter
on any object of type HttpServletRequest is a source, the
absence of specific types in JavaScript makes this sort of security
configuration impossible. To address this problem, the rules in AC-
TARUS specify the complete path of retrieval for sources, sinks and
sanitizers. For example, a rule specifies that field innerHTML in
any object returned by a call to document.getElementById
is a sink, since writes to that field get parsed as HTML and placed
in the page. Thus, ACTARUS locates all the aliases of global object
document, detects all the calls to getElementById on those
aliases, and collects all the objects returned by such calls. It then
looks for all field-write instructions on the innerHTML field of
those objects. The variables used in those field-write instructions
are marked as sinks by the analysis. A similar procedure is fol-
lowed to locate other sinks, as well as sources and sanitizers.

Another characteristic of JavaScript that makes JavaScript code
more vulnerable to attacks than code written in other languages is
that in JavaScript, variables can point to functions. This feature
allows variables pointing to security-sensitive functions (including
sanitizers and sink methods) to be reassigned. If a variable pointing
to a sanitizer gets assigned a different value, untrusted input may
no longer be sanitized as intended. A novel security contribution
of ACTARUS is its automatic detection of field-write instructions
that can lead to assigning new values to variables pointing to such
security-sensitive functions.

4.1 Tracking Taint via Access Paths
To uncover vulnerable information-flow paths, ACTARUS main-

tains the set of all heap locations that store untrusted values. A

naïve way of doing this is to explicitly model the entire heap, in-
cluding all benign locations, and then track—at each point during
the analysis—which portions of the heap are tainted. This solu-
tion is, in general, prohibitively expensive, and thus also unscal-
able, as demonstrated, e.g., in [35]. Our solution uses a storeless
view of the heap [11], which—instead of representing the heap
explicitly—tracks only information relevant for taint propagation;
namely, which sequences of local variable and field dereferences
may lead to untrusted data.

We assume a standard concrete semantics where a program state
and an evaluation of an expression in a program state are defined.
The following semantic domains are used:

L ∈ objects
v ∈ Val = objects ∪ {null}
ρ ∈ Env = VarId → Val
h ∈ Heap = objects × FieldId → Val
σ = 〈L, ρ, h〉 ∈ States = 2objects × Env ×Heap

where objects is an unbounded set of dynamically allocated ob-
jects, and VarId and FieldId are sets of local variables and field
identifiers, respectively. A program state σ thus maintains the set
L of allocated objects, an environment ρmapping local variables to
values, and a mapping h from fields of allocated objects to values.

As motivated above, the data-flow analysis carried out by AC-
TARUS is based on the notion of an “access path” [12]. Formally,
an access path is a pair, 〈v, 〈f1, . . . ,fn〉〉, where v is a local vari-
able, and f1, . . . ,fn are field identifiers. The evaluation of access
path 〈v, 〈f1, . . . ,fn〉〉 in a concrete state σ with an environment
ρ and a heap h yields the unique heap-allocated object o satisfying
the following condition:

∃o1, . . . , on.o1 = ρ(v) ∧ o2 = h(o1,f1) ∧ . . . ∧ o = h(on,fn)

such that o, o1, . . . , on ∈ L, where L is the set of allocated objects
in σ. If no such object o exists, then the result of the evaluation is a
failure, ⊥.

The set of all access paths evaluating to object o in state σ is a
sound representation of o, in that aliasing between access paths is
made explicit, and so flows through the heap can be treated in a
sound manner. Unfortunately, this set is, in general, not guaranteed
to be finite even in the concrete setting due to cycles in the heap
(caused by recursive structures and back pointers). Even if the set
is finite, deeply nested objects can produce very long chains.

This mandates a bound, k, on the length of tracked access paths
for the static analysis to be tractable. An access path of length
greater than k is then soundly approximated (or widened) by replac-
ing its suffix, beyond the first k field identifiers, by a special sym-
bol, ∗. The evaluation of widened access path 〈v, 〈f1, . . . ,fk, ∗〉〉
in concrete state σ yields all the objects in L that are reachable
via (zero or more) heap edges from the object 〈v, 〈f1, . . . ,fk〉〉
evaluates to in σ. In practice, we have found that setting k = 5
works well, and have used this value for our experiments, which
we describe in Section 5.

1: var p = document.URL;
2: var q = { }
3: var r = p;
4: q.f = r;
5: document.location = q.f;

Figure 8: Tracking of Tainted Access Paths

Access paths are a natural way of representing taint flows. Con-
sider, for example, the program in Figure 8. The source statement
at line 1 produces the seed access path 〈p, ε〉, where ε denotes an

empty sequence of field identifiers. Next, the assignment at line 3
results in another tainted access path, 〈r, ε〉. The statement at line 4,
which writes field f, leads to the emergence of a third access path,
〈q, 〈f〉〉, which reaches the assignment to sink field location at
line 5, and causes a vulnerability to be flagged.

4.2 Taint-analysis Algorithm
To propagate tainted access paths, ACTARUS employs a novel

extension of the Reps-Horwitz-Sagiv (RHS) algorithm [26]. RHS
provides a highly precise static-analysis framework to transform
numerous data-flow problems into graph-reachability problems. AC-
TARUS seeds taint propagation at sources. Every time a tainted ac-
cess path is used in an instruction, ACTARUS accordingly taints the
access paths that are defined in that instruction.

The taint-propagation process is demand driven in the sense that
access paths are instantiated only when taint reaches them, which
makes this algorithm very efficient. Another important character-
istic of this algorithm is that it is context-sensitive: Each method
may assume multiple taint behaviors depending on the context in
which it is invoked—a key requirement for precision. We discuss
this point further in Sections 4.2.1 and 4.2.2.

Furthermore, ACTARUS enhances RHS since it handles issues
that involve aliasing relations in the heap (i.e., multiple local names
for the same object). This characteristic is not there in the original
RHS algorithm, which does not lend itself to modeling problems
that involve aliasing relations established in different procedures.

In the remainder of this section, we first illustrate how the al-
gorithm works in the simple case without aliasing issues, and then
discuss how the heap is handled.

4.2.1 Basic Taint-analysis Algorithm
In the absence of any issues with heap aliasing, taint analysis is

straightforward: a precise meet-over-all-feasible-paths solution can
be computed using a standard Reps-Horwitz-Sagiv (RHS) solver
[26]. We illustrate how this works on the example in Figure 9.

1: function id(x) {
2: return x;
3: }
4: function set(y, z) {
5: z.f = y;
6: }
7: var p = document.URL;
8: var q = { }
9: var r = id(p);
10: set(r, q);

Figure 9: Code Snippet without Heap Issues

The read of document.URL at line 7 is a source of taint, which
generates tainted access path 〈p, ε〉. The value of p flows to the
invocation of id at line 9. The analysis of id, lines 1–3, reveals
that it simply propagates taint from its parameter to its return value,
so the relational summary 〈x, ε〉 → 〈ret , ε〉 is established for the
id function (where ret is a privileged symbol denoting the return
value of the method) and propagated to the callers of id. Applying
this summary to the main method at line 9 generates the fact that
〈r, ε〉 is tainted.

The summary 〈x, ε〉 → 〈ret , ε〉 is said to be relational because
if there is another invocation of id in the program such that the
argument passed to id is not tainted, the return value will correctly
not be tainted in that case. Therefore, while a summary is generated
at a callee and propagated to its callers, it is applied to a caller
only when the relevant precondition holds in that caller. In this
sense, ACTARUS’ taint analysis is infinitely context-sensitive: Taint
propagation is based on the calling context. Recursion is handled

by the underlying RHS solver. An example with two invocations to
the id method—one with a tainted argument and the other with a
non-tainted argument—will be presented in Section 4.2.2.

Continuing with the example of Figure 9, the value of r is passed
to set at line 10. The set function (lines 4–6) contains a field-
write instruction, which propagates taint from its first argument to
the f field of its second argument, thereby creating a non-empty ac-
cess path. In this case, the function’s relational summary is 〈y, ε〉 →
〈z, 〈f〉〉. Applying this summary to the caller of set adds the fact
that 〈q, 〈f〉〉 is tainted. When the analysis terminates, we will have
learned that 〈p, ε〉, 〈r, ε〉 and 〈q, 〈f〉〉 are tainted—a precise result.

4.2.2 Full Taint-analysis Algorithm
The program in Figure 9 is an aliasing-free program; there are

never multiple names for the same heap location. That is, 〈q, 〈f〉〉
is the only name for the given location. Suppose, however, that
some other variable pointed to the same location; in that case, the
rules above might cause us to miss the fact that that variable’s f
field is also tainted. For example, consider the variables q and s
in the very similar program in Figure 10; both q and s refer to the
same object, and so any taint that results from one of them must
carry over to the other. Hence, our taint-analysis algorithm extends
the RHS algorithm to also account for heap aliasing based on the
pointer-analysis solution computed during call-graph construction.

1: function id(x) {
2: return x;
3: }
4: function set(y, z) {
5: var x = z.g;
6: x.f = y;
7: }
8: var p = document.URL;
9: var q = { g: { } }
10: var r = id(p);
11: var s = id(q);
12: set(r, s);

Figure 10: Code Sample Snippet with Heap Issues

To resolve aliasing relations, we construct an abstraction of the
pointer-analysis solution, the “heap graph”. ACTARUS’ heap graph
is a bipartite graph, H = 〈P ∪O,E〉, where P is the set of environ-
ment and heap pointers in the program—that is, local variables and
fields that reference objects—and O is the set of object abstractions
participating in the pointer-analysis solution. Edge p → o from
pointer p to abstract object o denotes that o may be pointed-to by
p. Edge o→ p from abstract object o to field p denotes that o owns
field pointer p. Constructing such a heap-graph is a fairly standard
procedure (see, for example, [12]), and our abstraction supports it
because the analysis is field-sensitive, meaning that it distinguishes
the fields of an abstract object from each other as well as fields
of different abstract objects [28]. The heap graph for Figure 10 is
shown in Figure 11.

In the program of Figure 10, there are two changes compared to
Figure 9. The first is an additional call to id (line 11), which de-
fines s, and the second is the more complex set function (lines 4–
7). Analysis at first proceeds as above, finding taint for 〈p, ε〉 and
〈r, ε〉.

The call to set illustrates the heap issues. The assignment x.f
= y establishes the summary 〈y, ε〉 → 〈x, 〈f〉〉, but that is clearly
not sufficient: x.f refers to the same location as z.g.f, and our
analysis needs to capture such taint. Sound reasoning about the
effect of a field-write statement requires finding (a conservative ap-
proximation of) the set of access paths that are aliased with 〈x, 〈f〉〉
in the lexical scope of set. This is not handled by the original

q

s

set.z

g

set.x

fURL

r

p

set.y

document

q
Pointer for

local variable
q

g Pointer for
field g

Abstract object

Figure 11: Heap Graph for Figure 10

RHS algorithm [26]. Our analysis, on the other hand, uncovers the
aliases of 〈x, 〈f〉〉 based on the definitions in Figure 12.

Figure 12 defines function Aliases , which, for an access path
rooted at a local variable, returns all the access paths that satisfy
the following conditions:
1. They are rooted at local variables. This is equivalent to testing

that isLocal(v) evaluates to true.
2. Those local variables belong to the same method. This is equiv-

alent to testing methodOf (v) = methodOf (w).
3. Alias the given access path. This is equivalent to testing that the

sets of abstract objects obtained with the two calls to PathTo
have a non-empty intersection.

This function uses some very intuitive auxiliary functions, includ-
ing Truncate , which limits the length of an access path to a given
bound, and PathTo, which computes the sets of abstract objects
that are reachable through a given access path. Of particular in-
terest is function FieldName , which, given a field pointer in P,
returns the corresponding field identifier in FieldId . This is neces-
sary because, as we explained above, ACTARUS is a field-sensitive
algorithm, and as such distinguishes field pointer keys of different
abstract objects even when such field pointer keys represent identi-
cally named fields. Every time taint flows into an access path, AC-
TARUS executes function Aliases to determine local aliases, and
then proceeds with the RHS-based taint propagation.

In this example, z is indeed a local variable of the same method,
and the global pointer analysis records that the g field of an ob-
ject it can name may point to the same object as x; hence the heap
path 〈g, f〉 for z resolves to the same abstract object as 〈f〉 for x.
The path is short enough that there is no need to truncate it. This
is illustrated in Figure 11, where the path from set.x through f
leads to the same abstract object as the path from set.z through
g and f. The analysis, therefore, computes the relational summary
〈y, ε〉 → 〈z, 〈g,f〉〉 for set. Applying this summary at the caller
site (line 12) adds access path 〈s, 〈g,f〉〉. Once again, this is in-
complete, since s and q denote the same object, and hence, the
definition in Figure 12 uncovers the additional access paths.

Note that the additional call to id (line 11) adds no taint infor-
mation, since q is not tainted to begin with. ACTARUS’ context-

Limiting access paths to length k

Truncate(〈f1, . . . ,fi〉)←
{
〈f1, . . . ,fi〉 i ≤ k
〈f1, . . . ,fk, ∗〉 i > k

Abstract objects reachable as v.f1.fi

PathTo(〈v, 〈f1, . . . ,fi〉〉)←

o

∣∣∣∣∣∣∣∣∣∣∣∣∣
∃o1, . . . , oi+1 ∈ O, f1, . . . , fi ∈ P .

(v→ o) ∈ E ∧

∀j = 1, . . . , i

isObject(oj) ∧
isField(fj) ∧
FieldName(fj) = fj ∧
(oj → fj) ∈ E ∧
(fj → oj+1) ∈ E

 ∧
oi+1 = o

Local aliases of w.g1.gj

Aliases(〈w, 〈g1, . . . ,gj〉〉)←

〈v, 〈f1, . . . ,fi〉〉
∣∣∣∣∣∣∣∣∣∃h1, . . . ,ht ∈ FieldId .

isLocal(v) ∧
methodOf (v) = methodOf (w) ∧
〈f1, . . . ,fi〉 = Truncate(〈h1, . . . ,ht〉) ∧
PathTo(〈v, 〈h1, . . . ,ht〉〉)∩

PathTo(〈w, 〈g1, . . . ,gj〉〉) 6= ∅

Figure 12: Computation of Local Aliases on Heap Graph H = 〈O ∪P,E〉 with Access-path-length Bound k

sensitive taint propagation, discussed in Section 4.2.1, saves us
from adding 〈s, ε〉 to the set of tainted access paths, which would
have made the analysis very coarse and generated numerous false
positives. In fact, the tainted access path 〈s, 〈g,f〉〉 that we have
computed for s is much more precise than just 〈s, ε〉.

This algorithm for resolving aliasing relations is flow-insensitive
with respect to fields, meaning that it does not account for strong
updates on fields; i.e., if field f of object o is assigned values v
and w at two different program points, the analysis conservatively
considers field f to point to the set of values {v, w}. Conversely,
a flow-sensitive analysis attempts to determine which write instruc-
tion is performed first and which last, and based on that information
it reports that f points to either v or w.

While flow-sensitive analyses may appear to be more precise,
they are not always sound. This is particularly true for JavaScript.
In fact, since in JavaScript the execution of programs is often event-
driven—based, for example, on the click of a button or the interac-
tion with a User Interface (UI) gadget—the order of execution of
certain routines cannot always be established. Attempting to as-
sert an order of execution can lead to unsound results. Therefore,
we chose to conservatively make the analysis flow-insensitive with
respect to fields.

Inside a procedure, however, ACTARUS is flow-sensitive with
respect to local variables because it accounts for strong updates on
them. In fact, for every access path 〈v, 〈f1, . . . ,fn〉〉 ACTARUS
instantiates, variable v is in SSA form. As described in Section
3.4, SSA creates variable versions to make sure that each variable
gets assigned only once, which indirectly provides a measure of
intra-procedural flow-sensitivity.

4.3 Handling First-class Fields
It should be observed that, while traversing the heap graph back-

wards, special field pointer keys may be encountered that corre-
spond to reflective property accesses, where the properties could
not be fully disambiguated through string-constant propagation or
string concatenation, as explained in Section 3.3. In such cases, the
sound solution adopted by ACTARUS is to consider all the possible

properties of an object upon which a reflective property access has
been performed, compatible with the type of the property that is
being accessed reflectively. For example, even though a property
cannot be disambiguated, it may be possible to establish statically
that its type is Number. All the properties of type Number should
then be considered for this step in the access path, whereas all the
others can be safely excluded.

1: function id(x) {
2: return x;
3: }
4: function set(y, z, f) {
5: var x = z.g;
6: x[f] = y;
7: }
8: var p = document.URL;
9: var q = { g: { } }
10: q.g.k = "safe";
11: var r = id(p);
12: var s = id(q);
13: set(r, s, (... ? "f" : "g"));
14: document.write(q.g.k);

Figure 13: Sample Code Snippet with Ambiguous Field Use

Disambiguation of property names also allows for fairly precise
analysis results. Consider the code snippet in Figure 13—a slightly
modified version of the example of Figure 10. The set function
(lines 4–7) now takes an additional parameter f, establishing which
of the properties of x will be set, and the property-write instruction
at line 6 uses f as a variable instead of the literal f. Furthermore,
q.g has a field k that is set to constant string "safe" at line 10,
and there is now a sink method call at line 14. The call to set
(line 13) passes either "f" or "g" as the name of the property
to set, based on the evaluation of a boolean condition (indicated,
for brevity, as "..."). In this case, the analysis will assume that
either property f or property g has been written, and the taint anal-
ysis will conservatively record that both access paths 〈q, 〈g,f〉〉
and 〈q, 〈g,g〉〉 are potentially tainted. This assumption, while con-
servative, is still quite precise because it does not indiscriminately
taint all the access paths rooted at q. In particular, 〈q, 〈g,k〉〉 is not

marked as tainted. Therefore, the sink method call at line 14 is not
flagged as a vulnerability, which is a precise result.

5. EXPERIMENTAL RESULTS
ACTARUS was tested on three sets of benchmarks to examine its

ability to discover taint violations. The first set of benchmarks was
a test suite designed by the authors of this paper, and now made
available to the scientific community6 to advance further research
in this area. The suite was comprised of over 140 micro bench-
marks to test the precision and soundness of ACTARUS. The sec-
ond set was a collection of Web pages obtained from crawling the
top 50 sites according to Alexa1. The third set was a collection of
Web pages obtained by crawling an additional 19 large, well known
Web sites.

The first set of benchmarks, the ACTARUS test suite designed by
the authors, was used primarily for testing. The test suite included
tests that ranged from basic tests that any taint analysis should pass,
to complex tests that could only be passed with an advanced taint-
analysis technique. Some of the advanced tests included tainting
lexically scoped variables, tainting variables that are interprocedu-
raly aliased, overwriting sanitizers, accessing variables through the
arguments array, and accessing tainted data through the prototype
chain. All these microbenchmarks test patterns that are used in real
JavaScript applications. ACTARUS correctly finds all exploits in
these microbenchmarks.

The second and third set of benchmarks comprise real Web pages
that were downloaded off the Internet. For the second set of bench-
marks, the top 50 sites according to Alexa were crawled to a level
of 3 links away from the home page. The top 50 sites were cho-
sen due to time limitations; however, many seemingly popular or
important sites are not in the top 50. To account for this, the third
set of benchmarks is a collection Web sites that the authors thought
were popular or important. Both sets of Web sites were crawled to
a limited depth, again due to time limitations.

The Web pages from the second and third benchmarks were com-
bined and ACTARUS ran on a sample of them. This was done be-
cause the crawls produced over 30,000 pages, which was a pro-
hibitive number for the purposes of this evaluation. The sampling
was done by picking various places to start in our alphabetically
ordered list of Web addresses. In total, ACTARUS was run on
12,473 Web pages and successfully analyzed 9,726 pages. AC-
TARUS failed due to a timeout of 4 minutes or an exception orig-
inated from parsing illegal JavaScript code in approximately 22%
of the runs. Since ACTARUS analyzes each Web page individually,
it would be trivial to increase analysis throughput by running many
copies of ACTARUS on many computers. This would also lessen
the need for a timeout. For this paper, however, ACTARUS was run
on only 4 disparate computers at the same time.

Site Unique True Positives Total True Positives
A 7 80
B 4 12
C 4 91
D 7 13
E 2 4
F 1 200
G 1 1
H 1 114
I 3 7
J 1 3
K 1 1

Table 1: True Positives for a Sample of the Crawled Web Sites

To save bandwidth and reduce download time, JavaScript files
are typically minified, which includes reducing variable names to
single characters and eliminating new-line characters. While the
resulting JavaScript code is (almost always) still legal, reporting
issues on JavaScript programs that are only one line long is very
problematic since the developer cannot easily detect the tainted
flows. For this reason, ACTARUS is integrated with JavaScript Un-
packer and Beautifier7, a tool that preprocesses and nicely formats
all the Web pages before passing them to ACTARUS for the taint
analysis. The 4 minutes granted to ACTARUS to complete the anal-
ysis of a Web page and its embedded JavaScript code included the
time necessary to beautify the JavaScript code.

Table 1 shows the results from our study of the issues reported by
ACTARUS.8 For a given Web site, the table shows the numbers of
“total true positives” and “unique true positives” for a Web site. A
true positive is a feasible data-flow path from an untrusted source to
a security-sensitive sink, not intercepted by a sanitizer; the source,
sink and sanitizer belong to the same security rule. In total, AC-
TARUS found true positives on 11 different sites. However, due to
the way Web sites are designed—which includes the fact that Web
pages in the same site often point to code templates and libraries, or
even include identical copies of certain JavaScript programs—the
same true positive may be present in multiple pages on the same
Web site. Therefore, we considered it important to count the total
true positives as the total number of true positives found on that site.
If the same code was reported as a true positive multiple times, we
counted it once as a unique true positive. Comparing unique true
positives with total true positives for a given Web site gives an in-
dication of the impact that individual issues can have on a Web site
if an attacker exploits them.

The results in Table 1 indicate that a true positive may be present
in many different Web pages. This is very useful information for
developers. If their Web site is based around automatic code reuse
via templates or server-side code inclusion, the developer will know
how to fix the problem at the source. If their Web site was de-
signed by copying and pasting pages, with little or no automatic
code reuse, these findings tell them all the pages that may contain
a vulnerability.

ACTARUS conservatively considers the entire DOM to be tainted.
This is necessary because untrusted user-provided data may appear
anywhere on a Web page. One example is when user data is read
from a database and output as part of a Web page. This leads to
some issues being reported for assigning one part of the DOM to
another part of the DOM. These are true positives because untrusted
data is potentially being used in a new context which may be dan-
gerous. For instance, one part of the DOM could be inserted into a
script segment in a different part of the DOM. What was previous
benign HTML will now be interpreted as a script.

With the help of pretty printing the results, a useful user interface
to display the results, and detailed taint-flow reporting (all imple-
mented as part of the ACTARUS tool), it took a total of 6 person
days to manually separate the true positives from the false positives
for the 9,726 pages ACTARUS analyzed. ACTARUS’s total-true-
positive rate was slightly over 40%, meaning that out of every 5
issues reported, 2 were true positives and 3 were false positives.
Since false positives are non-issues, distinguishing between unique
and total false positives would not generate helpful information.
Rather than delving into this expensive classification, we preferred
to study the most recurrent characteristics of the false positives,
which we used to further refine ACTARUS. A recurrent source of

7http://jsbeautifier.org.
8The names of the Web sites have been anonymized.

false positives consisted of tainted flows reaching the parameters
in a URL. While tainting the hostname and/or path in a URL is a
serious vulnerability, which can lead to redirection attacks, tainting
the parameters is not a vulnerability; parameters are always tainted.
We observed that refining the analysis by rejecting flows that reach
the parameters in a URL would dramatically cut the false-positive
rate. As part of future work, we will integrate ACTARUS with an
analysis that removes many of these false positives.

6. RELATED WORK
In this section, we survey research work in the space of JavaScript

security and static taint analysis. Various approaches have been
proposed for JavaScript security bug finding. Chugh, et al. [6]
present a staged approach for handling JavaScript’s dynamic na-
ture. First, static analysis is applied to as much of the information
flow as possible based on the known code. Then, at the browser,
the residual checking is performed whenever new code is dynami-
cally loaded. Contrary to [6], ACTARUS does not require a staged
approach, and relies solely on static analysis of the JavaScript ap-
plication. ACTARUS also employs more precise abstractions and
accounts for more JavaScript constructs.

Guha, et al. [17] use static analysis to extract a model of expected
client behavior, as seen from the server, for JavaScript programs.
This model is then used to build an intrusion-prevention proxy for
the server. To avoid mimicry attacks, random asynchronous re-
quests are inserted. In a related study, Vogt, et al. [36] propose a
system that stops XSS attacks already on the client side by tracking
the flow of sensitive information inside the Web browser. If sensi-
tive information is about to be transferred to a third party, then the
decision whether to permit the transfer is delegated to the user. The
system is integrated into the Firefox browser.

Maffeis, et al. [21] study three techniques that are effective in
protecting sensitive properties of honest code against an attacker
that supplies code to be executed in the same JavaScript environ-
ment: filtering, rewriting and wrapping. Filtering is a static anal-
ysis that takes place once, before the untrusted code is loaded, to
judge whether the code conforms to certain criteria; if not, then the
code is rejected. Rewriting inserts run-time checks to inhibit unde-
sirable actions by the untrusted code. Finally, wrapping is used to
protect sensitive resources of the trusted environment by enclosing
them inside functions that perform run-time checks to verify that
these resources are not used maliciously by untrusted code.

Yu, et al. [41] use another form of rewriting to eliminate secu-
rity attacks due to JavaScript. Their algorithm takes a JavaScript
application, identifies relevant operations, modifies suspicious be-
haviors, and prompts the user on how to proceed when appropriate.

Gatekeeper, by Guarnieri and Livshits [16], detects security and
reliability problems in JavaScript widgets. It uses a static pointer
analysis for program understanding, and issues queries against the
pointer analysis to detect dangerous behavior, even in the presence
of malicious obfuscation. ACTARUS also is based on a pointer anal-
ysis, but it is designed to operate on large applications, and contains
advanced rules and special handling for JavaScript constructs.

KUDZU, by Saxena, et al. [29], uses symbolic execution to ex-
plore the execution space of JavaScript applications. It assumes as
input the URL for a Web application, and outputs a high-coverage
test suite to systematically explore it. It uses a specialized con-
straint solver for the theory of strings, which expresses the seman-
tics of JavaScript operations. It has been applied to find client-
side code-injection vulnerabilities in Web applications. In another
study [30], Saxena, et al. describe FLAX, a taint-enhanced black-
box fuzzer that finds validation bugs in JavaScript programs. FLAX
avoids false alarms and demonstrates the presence of candidate vul-

nerabilities by generating test cases via random fuzz testing.
VEX, by Bandhakavi, et al. [4], computes tainted flows for every

source/sink pair, regardless of whether those sources and sinks be-
long to the same security rules, and without precomputing reach-
able sources and sinks. After this expensive computation is per-
formed, results are post-processed. In contrast, ACTARUS only
computes flows starting at a reachable source, and stops as soon
as those flows reach a sanitizer or sink from the same rule. This is
a potentially huge performance improvement. Furthermore, unlike
VEX, ACTARUS conservatively handles prototype-chain lookups.
Like VEX, ACTARUS handles property accesses conservatively. Un-
like VEX, whenever a property is statically known through constant
propagation or constant-string concatenation analysis, ACTARUS
replaces the property access with a load or store for the specific
field that has been computed.

Typically, the data manipulated by a program can be tagged with
security levels [10], which naturally assume the structure of a poset.
Under certain conditions, this poset is a lattice [9]. Given a pro-
gram, the principle of non-interference dictates that low-security
behavior of the program be not affected by any high-security data,
unless that high-security data has been previously downgraded [14].
The taint-analysis problem described in this paper is an information-
flow problem in which high data is the untrusted output of a source,
low-security operations are those performed by sinks, and untrusted
data is downgraded by sanitizers.

Volpano, et al. [37] have shown a type-based algorithm that cer-
tifies implicit and explicit flows and guarantees non-interference.
Shankar, et al. present a taint analysis for C using a constraint-
based type-inference engine based on cqual [31]. To find for-
mat string bugs, cqual uses a type-qualifier system [13] with two
qualifiers: tainted and untainted. The variables whose values can
be controlled by an untrusted adversary are qualified as tainted, all
the others as untainted. Similar to the propagation graph built by
ACTARUS, a constraint graph is constructed for a cqual program.
If there is a path from a tainted node to an untainted node in the
graph, an error is flagged. Myers’ Java Information Flow (JIF) [23]
uses type-based static analysis to track information flow. JIF con-
siders all memory as a channel of information, which requires that
every variable, field, and parameter used in the program be stati-
cally labeled. Labels can be either declared or inferred.

Ashcraft and Engler’s taint analysis [2] provides user-defined
sanity checks to untaint potentially tainted variables. Snelting, et
al. [33] and Hammer, et al. [18] propose a flow-sensitive program-
slicing-based taint analysis for Java.

Livshits and Lam [20] present a taint analysis for Java that is
engineered to track taint flowing through heap-allocated objects.
Their analysis requires prior computation of Whaley and Lam’s
flow-insensitive, context-sensitive may-points-to analysis, which is
based on Binary Decision Diagrams (BDDs) [40], and requires the
presence of programmer-supplied descriptors for sources, sinks,
and library methods that handle objects through which taint may
flow. An important distinction is that ACTARUS automatically gen-
erates the summaries it consumes, and requires no user input. It is
also unclear whether BDD-based static analysis can scale to large
applications when using object sensitivity [19]. A more recent
study by Tripp, et al. [35] presents Taint Analysis for Java (TAJ),
which is effective at analyzing real-world Web applications. The
main limitation of TAJ is that it trades soundness for scalability and
accuracy. This contributes to the usability of TAJ, but leaves the
security status of the subject application unknown.

Wassermann and Su extend Minamide’s string analysis [22] to
syntactically isolate tainted substrings from untainted substrings in
PHP. They label non-terminals in a Context-Free Grammar (CFG)

with annotations reflecting taintedness and untaintedness. Their ex-
pensive, yet elegant, mechanism is applied to detect both injection
[38] and XSS [39] vulnerabilities.

7. CONCLUSION
This paper has presented ACTARUS, a novel, product-quality

taint-analysis algorithm for JavaScript. ACTARUS soundly mod-
els most of the characteristics of JavaScript that have traditionally
made static analysis of JavaScript programs a challenging problem.
This paper has also discussed the experimental results obtained by
running ACTARUS on 9,726 Web pages, obtained by crawling the
50 most visited Web sites worldwide as well as other popular Web
sites. Such results expose 526 vulnerabilities on 11 sites. Those
vulnerabilities can cause malicious JavaScript code execution.

8. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization for the

C Programming Language. PhD thesis, University of
Copenhagen, Copenhagen, Denmark, 1994.

[2] K. Ashcraft and D. Engler. Using Programmer-Written
Compiler Extensions to Catch Security Holes. In S&P, 2002.

[3] D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++
Virtual Function Calls. In OOPSLA, 1996.

[4] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett.
VEX: Vetting Browser Extensions for Security
Vulnerabilities. In USENIX Security, 2010.

[5] W. Chang, B. Streiff, and C. Lin. Efficient and Extensible
Security Enforcement Using Dynamic Data Flow Analysis.
In CCS, 2008.

[6] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
Information Flow for JavaScript. In PLDI, 2009.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph.
TOPLAS, 13(4), 1991.

[8] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs Using Static Class Hierarchy
Analysis. In ECOOP, 1995.

[9] D. E. Denning. A Lattice Model of Secure Information Flow.
CACM, 19(5), 1976.

[10] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow. CACM, 20(7), 1977.

[11] A. Deutsch. A Storeless Model of Aliasing and Its
Abstractions Using Finite Representations of Right-regular
Equivalence Relations. In ICCL, 1992.

[12] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
Effective Typestate Verification in the Presence of Aliasing.
In ISSTA, 2006.

[13] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type
Qualifiers. In PLDI, 2002.

[14] J. A. Goguen and J. Meseguer. Security Policies and Security
Models. In S&P, 1982.

[15] D. Grove and C. Chambers. A Framework for Call Graph
Construction Algorithms. TOPLAS, 23(6), 2001.

[16] S. Guarnieri and B. Livshits. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for
Javascript Code. In USENIX Security, 2009.

[17] A. Guha, S. Krishnamurthi, and T. Jim. Using Static
Analysis for Ajax Intrusion Detection. In WWW, 2009.

[18] C. Hammer, J. Krinke, and G. Snelting. Information Flow
Control for Java Based on Path Conditions in Dependence

Graphs. In S&P, 2006.
[19] O. Lhoták and L. J. Hendren. Context-Sensitive Points-to

Analysis: Is It Worth It? In CC, 2006.
[20] V. B. Livshits and M. S. Lam. Finding Security

Vulnerabilities in Java Applications with Static Analysis. In
USENIX Security, 2005.

[21] S. Maffeis, J. C. Mitchell, and A. Taly. Isolating JavaScript
with Filters, Rewriting and Wrappers. In ESORICS, 2009.

[22] Y. Minamide. Static Approximation of Dynamically
Generated Web Pages. In WWW, 2005.

[23] A. C. Myers. JFlow: Practical Mostly-static Information
Flow Control. In POPL, 1999.

[24] A. C. Myers and B. Liskov. A Decentralized Model for
Information Flow Control. In SOSP, 1997.

[25] J. Newsome and D. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In NDSS, 2005.

[26] T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In POPL, 1995.

[27] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysis
of the Dynamic Behavior of JavaScript Programs. In PLDI,
2010.

[28] B. G. Ryder. Dimensions of Precision in Reference Analysis
of Object-Oriented Languages. In CC, 2003. Invited Paper.

[29] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A Symbolic Execution Framework for JavaScript.
In IEEE Symposium on Security and Privacy, pages
513–528, 2010.

[30] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation
Vulnerabilities in Rich Web Applications. In NDSS, 2010.

[31] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In
USENIX Security, 2001.

[32] O. Shivers. Control-Flow Analysis of Higher-Order
Languages or Taming Lambda. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1991.

[33] G. Snelting, T. Robschink, and J. Krinke. Efficent Path
Conditions in Dependence Graphs for Software Safety
Analysis. TOSEM, 15(4), 2006.

[34] M. Sridharan, S. J. Fink, and R. Bodík. Thin Slicing. In
PLDI, 2007.

[35] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman. TAJ: Effective Taint Analysis of Web
Applications. In PLDI, 2009.

[36] P. Vogt, F. Nentwich, N. Jovanovich, E. Kirda, C. Kruegel,
and G. Vigna. Cross-site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In NDSS, 2007.

[37] D. Volpano, C. Irvine, and G. Smith. A Sound Type System
for Secure Flow Analysis. JCS, 4(2-3), 1996.

[38] G. Wassermann and Z. Su. Sound and Precise Analysis of
Web Applications for Injection Vulnerabilities. In PLDI,
2007.

[39] G. Wassermann and Z. Su. Static Detection of Cross-site
Scripting Vulnerabilities. In ICSE 2008, 2008.

[40] J. Whaley and M. S. Lam. Cloning Based Context-Sensitive
Pointer Alias Analysis Using Binary Decision Diagrams. In
PLDI, 2004.

[41] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
Instrumentation for Browser Security. In POPL, 2007.

