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Abstract

The advent of Web 2.0 has led to the proliferation of
client-side code that is typically written in JavaScript.
Recently, there has been an upsurge of interest in static
analysis of client-side JavaScript for applications such as
bug finding and optimization. However, most approaches
in static analysis literature assume that the entire pro-
gram is available to analysis. This, however, is in di-
rect contradiction with the nature of Web 2.0 programs
that are essentially being streamed at the user’s browser.
Users can see data being streamed to pages in the form
of page updates, but the same thing can be done with
code, essentially delaying the downloading of code until
it is needed. In essence, the entire program is never com-
pletely available. Interacting with the application causes
more code to be sent to the browser.

This paper explores staged static analysis as a way
to analyze streaming JavaScript programs. We observe
while there is variance in terms of the code that gets sent
to the client, much of the code of a typical JavaScript
application can be determined statically. As a result, we
advocate the use of combined offline-online static analy-
sis as a way to accomplish fast, browser-based client-side
online analysis at the expense of a more thorough and
costly server-based offline analysis on the static code.
We find that in normal use, where updates to the code
are small, we can update static analysis results quickly
enough in the browser to be acceptable for everyday use.
We demonstrate the staged analysis approach to be ad-
vantageous especially in mobile devices, by experiment-
ing on popular applications such as Facebook.

1 Introduction

The advent of Web 2.0 has led to the proliferation of
client-side code that is typically written in JavaScript.
This code is often combined or mashed-up with other
code and content from different third-party servers, mak-

ing the application only fully available within the user’s
browser. Recently, there has been an upsurge of inter-
est in static analysis of client-side JavaScript. However,
most approaches in the static analysis literature assume
that the entire program is available for analysis. This,
however, is in direct contradiction with the nature of
Web 2.0 programs that are essentially being streamed to
the user’s browser. In essence, the JavaScript application
is never available in its entirety: as the user interacts with
the application, more code is sent to the browser.

A pattern that emerged in our experiments with static
analysis to enforce security properties [14], is that while
most of the application can be analyzed offline, some
parts of it will need to be analyzed on-demand, in the
browser. In one of our experiments, while 157 KB (71%)
of Facebook JavaScript code is downloaded right away,
an additional 62 KB of code is downloaded when visit-
ing event pages, etc. Similarly, Bing Maps downloads
most of the code right away; however, requesting traf-
fic requires additional code downloads. Moreover, often
the parts of the application that are downloaded later are
composed on the client by referencing a third-party li-
brary at a fixed CDN URL; common libraries are jQuery
and prototype.js. Since these libraries change rela-
tively frequently, analyzing this code ahead of time may
be inefficient or even impossible.

The dynamic nature of JavaScript, combined with the
incremental nature of code downloading in the browser
leads to some unique challenges. For instance, consider
the piece of HTML in Figure 1. Suppose we want to
statically determine what code may be called from the
onclick handler to ensure that none of the invoked func-
tions may block. If we only consider the first SCRIPT
block, we will conclude that the onclick handler may
only call function foo. Including the second SCRIPT
block adds function bar as a possible function that may
be called. Furthermore, if the browser proceeds to down-
load more code, either through more SCRIPT blocks or
XmlHttpRequests, more code might need to be consid-



<HTML>

<HEAD>

<SCRIPT>

function foo(){...}

var f = foo;

</SCRIPT>

<SCRIPT>

function bar(){...}

if (...) f = bar;

</SCRIPT>

</HEAD>

<BODY onclick="f();">

...

</BODY>

</HTML>

Figure 1: Example of adding JavaScript code over time.

ered to find all possible targets of the onclick handler.
While it is somewhat of an artificial example, the code

in Figure 1 demonstrates that JavaScript in the browser
essentially has a streaming programming model: sites in-
sert JavaScript into the HTML sent to the user, and the
browser is happy to execute any code that comes its way.

GULFSTREAM advocates performing staged static
analysis within a Web browser. We explore the trade-off
between offline static analysis performed on the server
and fast, staged analysis performed in the browser. We
conclude that staged analysis is fast enough, especially
on small incremental updates, to be made part of the
overall browser infrastructure. While our focus is on
analyzing large, modern AJAX applications that use
JavaScript, we believe that a similar approach can be ap-
plied to other platforms such as Silverlight and Flash.

1.1 Contributions
This paper makes the following contributions:

• Staged analysis. With GULFSTREAM, we demon-
strate how to build a staged version of a points-to
analysis, which is a building block for implement-
ing static analysis for a wide range of applications,
including security and reliability checkers as well
as optimizations. Our analysis is staged: the server
first performs offline analysis on the statically avail-
able code, serializes the results, and sends them to
a client which performs analysis on code deltas and
updates the results from the offline analysis. To our
knowledge, GULFSTREAM is the first static analysis
to be staged across across multiple machines.

• Trade-offs. We use a wide range of JavaScript
inputs of various sizes to estimate the overhead
of staged computation. We propose strategies for
choosing between staging analysis and full analysis
for various network settings. We explore the trade-
off between computation and network data transfer

and suggest strategies for different use scenarios.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2
provides background on both client-side Web applica-
tions and static analysis. Section 3 provides an overview
of our approach. Section 4 gives a description of our im-
plementation. Section 5 discusses our experimental re-
sults. Finally, Sections 6 and 7 describe related work and
outline our conclusions.

2 Background

This section first provides a background on static analy-
sis and its most common applications, and then talks
about code loading in Web applications.

2.1 Static Analysis

Static analysis has long been recognized as an impor-
tant building block for achieving reliability, security, and
performance. Static analysis may be used to find vi-
olations of important reliability properties; in the con-
text of JavaScript, tools such as JSLint [9] fulfill such a
role. Soundness in the context of static analysis gives us
a chance to provide guarantees on the analysis results,
which is especially important in the context of check-
ing security properties. In other words, lack of warnings
of a static analyzer implies that no security violations
are possible at runtime; several projects have explored
this avenue of research for client-side JavaScript [8,
14]. Finally, static analysis may be used for optimiza-
tion: statically-computed information can be used to op-
timize runtime execution. For instance, in the context of
JavaScript, static knowledge of runtime types [18] may
be used to improve the performance of runtime interpre-
tation or tracing [13] within the JavaScript runtime.

Several broad approaches exist in the space of static
analysis. While some recent static analysis in type in-
ference have been made for JavaScript [16], the focus of
this paper is on pointer analysis, long recognized as a
key building block for a variety of static analysis tasks.
Because function closures can be easily passed around in
JavaScript, pointer analysis is even necessary for some-
thing as ostensibly simple as call graph construction.

The goal of pointer analysis is to answer the question
“given a variable, what heap objects may it point to?”
While a great variety of techniques exist in the pointer
analysis space, resulting in widely divergent trade-offs
between scalability and precision, a popular choice is to
represent heap objects by their allocation site. For in-
stance, for the following program



1. var v = null;

2. for (...) {

3. var o1 = new Object();

4. var o2 = new Object();

5. if (...)

6. v = o1;

7. else

8. v = o2;

9. }

variables o1 and o2 point to objects allocated on lines 3
and 4, respectively. Variable v may point to either object,
depending on the outcome of the if on line 5. Note that
all objects allocated on line 3 within the loop are repre-
sented by the same allocation site, potentially leading to
imprecision. However, imprecision is inevitable in static
analysis, as it needs to represent a potentially unbounded
number of runtime objects with a constant number of sta-
tic representations.

In this paper, we focus on the points-to analysis for-
mulation proposed by the Gatekeeper project [14]. Gate-
keeper implements a form of inclusion-based Andersen-
style context-insensitive pointer analysis [2], which
shows good scalability properties, potentially with a loss
of precision due to context insensitivity. However, for
many applications, such as computing the call graph for
the program, context sensitivity has not been shown to be
necessary [21].

Static analysis is generally used to answer questions
about what the program might do at runtime. For in-
stance, a typical query may ask if it is possible for the
program to call function alert, which might be desir-
able to avoid code leading to annoying popup windows.
Similarly, points-to information can be used to check
heap isolation properties such as “there is no way to ac-
cess the containing page without going through proper
APIs” in the context of Facebook’s FBJS [12]. Proper-
ties such as these can be formulated as statically resolved
heap reachability queries.

2.2 Code Loading in Web Applications
As we described above, Web 2.0 programs are inherently
streaming, which is to say that they are downloaded over
time. Below we describe a small study we performed of
two large-scale representative AJAX applications. Fig-
ure 2 summarizes the results of our experiments. We
start by visiting the main page of each application and
then attempt to use more application features, paying at-
tention to how much extra JavaScript code is downloaded
to the user’s browser. Code download is cumulative: we
take care not to change the browser location URL, which
would invalidate the current JavaScript context.

As Figure 2 demonstrates, much of the code is down-
loaded initially. However, as the application is used,
quite a bit of extra code, spanning multiple potentially

Page visited or Added JavaScript
action performed files KB

FACEBOOK FRONT PAGE

Home page 19 157
Friends 7 29
Inbox 1 20
Profile 1 13

FACEBOOK SETTINGS PAGE

Settings: Network 13 136
Settings: Notifications 1 1
Settings: Mobile 3 14
Settings: Language 1 1
Settings: Payments 0 0

OUTLOOK WEB ACCESS (OWA)

Inbox page 7 1,680
Expand an email thread 1 95
Respond to email 2 134
New meeting request 2 168

Figure 2: Incremental loading of Facebook and OWA JavaScript code.

independently changing files, is sent to the browser. In
the case of Facebook, the JavaScript code size grows by
about 30% (9 files) once we have used the application
for a while. OWA, in contrast, is a little more mono-
lithic, growing by about 23% (5 files) over the time of
our use session. Moreover, the code that is downloaded
on demand is highly workload-driven. Only some users
will need certain features, leading much of the code to be
used quite rarely. As such, analyzing the “initial” portion
of the application on the server and analyzing the rest of
the code on-the-fly is a good fit in this highly dynamic
environment.

3 Overview

In this paper, we consider two implementation strate-
gies for points-to analysis. The first one is based on in-
memory graph data structures that may optionally be se-
rialized to be transmitted from the server to the client.
The second one is Gatekeeper, a BDD-based implemen-
tation described by Guarnieri and Livshits in [14]. Some-
what surprisingly, for small code bases, we conclude that
there is relatively little difference between the two imple-
mentations, both in terms of running time as well as in
terms of the size of result representation they produce. In
some cases, for small incremental updates, a graph-based
representation is more efficient than the bddbddb-based
one. The declarative approach is more scalable, however,
as shown by our analysis of Facebook in Section 5.4.
Figure 3 summarizes the GULFSTREAM approach and
shows how it compares to the Gatekeeper strategy.

Staged analysis. As the user interacts with the Web site,
updates to the JavaScript are sent to the user’s browser
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Figure 3: GULFSTREAM architecture and a comparison with the Gatekeeper project.

that in turn update the Web site. If the updates to the
Web site’s JavaScript are small, it would make sense that
an staged analysis would perform better than a full pro-
gram analysis. We looked at range of update sizes to
identify when an staged analysis is faster than recom-
puting the full program analysis. Full program analysis
might be faster because there is book keeping and graph
transfer time in the staged analysis that is not present in
the full program analysis. Section 5 talks about advan-
tages of staged analysis in detail. In general, we find it
to be advantageous in most settings, especially on slower
mobile connections with slower mobile hardware.

Soundness. In this paper we do not explicitly focus on
the issue of analysis soundness. Soundness would be es-
pecially important for a tool designed to look for secu-
rity vulnerabilities, for instance, or applications of sta-
tic analysis to runtime optimizations. Generally, sound
static analysis of JavaScript only has been shown pos-
sible for subsets of the language. If the program under
analysis belongs to a particular language subset, such
as JavaScriptSAFE advocated by Guarnieri et al. [14], the
analysis results are sound. However, even if it does not,
analysis results can still be used for bug finding, without
necessarily guaranteeing that all the bugs will be found.
In the remainder of the paper, we ignore the issues of
soundness and subsetting, as we consider them to be or-
thogonal to staged analysis challenges.

Client analyses as queries. In addition to the pointer
analysis, we also show how GULFSTREAM can be used
to resolve two typical queries that take advantage of
points-to analysis results. The first query looks for calls
to alert, which might be an undesirable annoyance to
the user and, as such, need to be prevented in third-party
code. The second looks for calls to setInterval1 with
non-function parameters.

4 Techniques

The static analysis process in GULFSTREAM proceeds in
stages, as is typical for a declarative style of program

1Function setInterval is effectively a commonly overlooked
form of dynamic code loading similar to eval.

1. var A = new Object();

2. var B = new Object();

3. x = new Object();

4. x.foo = new Object();

5. y = new Object();

6. y.bar = x;

7. y.add = function(a, b) {}

8. y.add(A, B)

(a) Input JavaScript program.

h2 h1 h4 h3 h5

x BA y
temp1

foo

temp2 temp3

addba
r

arg1 arg2

(b) Resulting graph.

Figure 4: Example of a program with a function call.

analysis. On a high level, the program is first represented
as a database of facts. Next, a solver is used to derive
new information about the program on the basis of initial
facts and inference rules.

In GULFSTREAM, the first analysis stage is normal-
izing the program representation. Based on this normal-
ized representation, we built two analyses. The first is the
declarative, bddbddb-based points-to analysis described
in Gatekeeper [14]. The second is a hand-coded imple-
mentation of points-to information using graphs as de-
scribed in the rest of this section.

The graph-based representation also produces graphs
that can efficiently compressed and transferred to the
browser from the server. To our surprise, we find that
at least for small programs, the graph-based represen-
tation performs at least as well as the bddbddb-based
approach often advocated in the past; bddbddb-based
analysis, however, performs faster on larger code bases,
as discussed in Section 5.4.



Node type Description Node shape

Variable The basic node is a simple variable node. It represents variables from the program or manufactured during
normalization. Line 1 in Figure 4 has two variable nodes, A and Object.

Oval

Heap These nodes represent memory locations and are sinks in the graph: they do not have any outgoing edges. Heap
nodes are created when new memory is created like in line 1 in Figure 4 when a new Object is created.

Rectangle

Field These nodes represent fields of objects. They are similar to variable nodes, except they know their object parent
and they know the field name used to access them from their object parent. Conversely, variables that have fields
contain a list of the field nodes for which they are the parent. Field nodes are represented by a triangular node
connected to the object parent by a named edge. Line 4 shows the use of a field access. The name of the edge is
the name of the field.

Triangle

Argument The fourth type of node is a special node called an argument node. These nodes are created for functions and
are used to link formals and actuals. The argument nodes contain edges to their respective argument variables
in the function body and when a function is called, the parameter being passed in gets an edge to the respective
argument node. In the graph, Argument nodes are represented by pentagons. Lines 7 and 8 from Figure 4 show
a function node being created and used. Return values are also represented by this type of node.

Pentagon

Figure 5: Description of nodes types in the graph.

4.1 Normalization
The first analysis stage is normalizing the program rep-
resentation and is borrowed from the Gatekeeper [14]
project. The original program statements are broken
down to their respective normalized versions, with tem-
poraries introduced as necessary. Here is a normalization
example that demonstrates variable introduction:

var x = new Date(); x = new Date();

var y = 17; y = ⊥;
h.f = h.g; t = h.g; h.f = t;

Variable t has been introduced to hold the value of
field h.g. Since we are not concerned with primitive val-
ues such as 17, we see it represented as ⊥.

4.2 Graph Representation
The points-to information is calculated from a graph rep-
resenting the program stored in memory. The graph is
generated from the normalized program. Assignments
turn into edges, field accesses turn into named edges,
constructor calls create new sinks that represent the heap,
and so on. The graph fully captures the points-to infor-
mation for the program. One important note is that this
graph is not transitively closed. If the program states that
A flows to B and B flows to C, the graph does not contain
an edge from A to C even though A flows to C. The graph
must be traversed to conclude that A points to C.

The full graph consists of several different types of
nodes, as summarized in Figure 5. We use the program
and corresponding graph in Figure 4 as an example for
our program representation. In lines 1-5, the program is
creating new objects which creates new heap nodes in
the graph. In lines 4, 6, and 7, the program is accessing
a field of an object which makes use of a field edge to
connect the base object’s node to the field’s field node.
The first use of a field creates this new edge and field
node. Line 7 creates a new function, which is similar
to creating a new object. It creates a new heap node,

but the function automatically contains argument nodes
for each of its arguments. These nodes act as a connec-
tion between actuals and formals. All actuals must flow
through these argument nodes to reach the formal nodes
inside the function body. Line 8 calls the function cre-
ated in line 7. This line creates assignment edges from
the actuals (A and B) to the argument nodes, which al-
ready have flow edges to the formal.

4.3 Serialized Graph Representation
The output of each stage of analysis is also the input to
the next stage of analysis, so the size and transfer time of
this data must be examined when looking at our staged
analysis. We compare the sizes of two simple file for-
mats that we implemented and a third that is the bddbddb
graph output, which is a a serialized BDD.

The first format from our analysis is based on the
graphviz DOT file format [11]. This format maintains
variable names for each node as well as annotated edges.
The second format from our analysis is efficient for di-
rected graphs and removes all non-graph related data like
names. This format is output in binary is as follows:

[nodeid];[field_id1],[field_id2],...;[arg_id1],...;

[forward_edge_node_id1],[forward_edge_node_id2],...;

[backward_edge_node_id1],[backward_edge_node_id2],...;

[nodeid]...

where nodeid, field id1, etc. are uniquely chosen in-
teger identifiers given to nodes within the graph. Finally,
the third format is a serialized BDD-based representation
of bddbddb.

Overall, the sizes of the different formats of the
staged-results graph vary widely. The DOT format is the
largest, and this is to be expected since it is a simple text
file describing how to draw the graph. The binary for-
mat and bddbddb output are closer in size, with the bi-
nary format being marginally smaller. A more detailed
comparison of graph representation sizes is presented in
Section 5.



pointsTo = ∅ 7→ ∅ // points-to map
reversePointsTo = ∅ 7→ ∅ // reverse version of points-to map
inc insert(G, e) // incrementally update points-to map

1: invalid = ∅
2: if e.src ∈ G then
3: invalidate(e.src, invalid)
4: end if
5: if e.dst ∈ G then
6: invalidate(e.dst, invalid)
7: end if
8: G = 〈GN ∪ {esrc, edst}, GE ∪ {e}〉
9: for all n ∈ invalid do

10: ans =compute-points-to(n, ∅)
11: pointsTo[n] = pointsTo[n] ∪ ans
12: for all h ∈ ans do
13: reversePointsTo[h] = reversePointsTo[h] ∪ n
14: end for
15: end for

invalidate(n ∈ GN , invalid) // recursively invalidate following flow edges

1: if n ∈ invalid then
2: return
3: end if
4: invalid = invalid ∪{n}
5: if n is FieldNode then
6: toVisit = compute-field-aliases(n.parent, n.fieldname)
7: end if
8: for all n′ adjacent to n do
9: if n → n′ is an assignment edge then

10: toVisit = toVisit ∪ n′

11: end if
12: end for
13: for all n′ ∈ toVisit do
14: invalidate(n′)
15: end for

Figure 6: Routines inc insert and invalidate.

Since our main focus was not to develop a new effi-
cient graph storage format, we gzip all the graph out-
put formats to see how their sizes compared under an
industry-standard compression scheme. Since BDDs are
highly optimized to minimize space usage, one would
expect their zipped size to be similar to their unzipped
size. As expected, the DOT format receives huge gains
from being zipped, but it is still the largest file format.
The difference between the three formats is minimal
once they are all zipped. Since this data must be trans-
ferred from the server to the client to perform the staged
analysis, these figures indicate that the graph output for-
mat does not make much of a difference on the staged
analysis time on a fast link assuming gzip times do not
vary much from one format to another. We leave more
detailed measurements that take decompression time into
account for future work.

4.4 Points-to Analysis Implementation

Our system normalizes JavaScript into a representation
that we can easily output for analysis. This means it
is straightforward for us to try several different analysis
techniques. We have two outputs of our representation
at the moment, an output to Datalog facts that is used by
bddbddb and an output to a graph representing the pro-

compute-points-to(n, visitedNodes)
1: if n ∈ visitedNodes then
2: return ∅
3: else
4: visitedNodes = visitedNodes ∪ {n}
5: end if
6: toVisit = ∅
7: ans = ∅
8: if n is HeapNode then
9: return n

10: end if
11: if n is FieldNode then
12: toVisit = toVisit ∪

compute-field-aliases(n.parent, n.fieldname)
13: end if
14: for assignment-edge e leaving n do
15: toVisit = toVisit ∪ {e.sink}
16: end for
17: for node n′ ∈ toVisit do
18: ans = ans ∪ compute-points-to(n′, visitedNodes)
19: end for
20: return ans

compute-field-aliases(parent, fieldname)
1: toVisit = ∅
2: if parent is FieldNode then
3: toVisit = toV isit ∪

compute-field-aliases(parent.parent, parent.fieldname)
4: end if
5: toVisit = toVisit∪ compute-aliases(parent)
6: for n ∈ toVisit do
7: if n has field fieldname then
8: ans = ans ∪ {n.fieldname}
9: end if

10: end for
11: return ans

compute-aliases(n, visitedNodes)
1: ans = n
2: if n ∈ visitedNodes then
3: return ∅
4: else
5: visitedNodes = visitedNodes ∪ {n}
6: end if
7: for edge e leaving n do
8: ans = ans ∪ compute-aliases(e.sink, visitedNodes)
9: end for

10: return ans

Figure 7: Points-to computation algorithm.

gram which is used by our implementation of a points-to
analysis. The reader is referred to prior work for more
information about bddbddb-based analyses [6, 14, 25].

GULFSTREAM maintains a graph representation that
is updated as more of the program is processed. Figure 6
shows a pseudo-code version of the graph update algo-
rithm that we use. In addition to maintaining a graph G,
we also save two maps: pointsTo, mapping variables
to heap locations and its reverse version for fast lookup,
reversePointsTo. Function inc insert processes every
edge e inserted into the graph. If the edge is not adjacent
to any of the existing edges, we update G with edge e. If
it is, we add the set of nodes that are adjacent to the edge,
together with a list of all nodes from which they flow to a
worklist called invalid. Next, for all nodes in that work-
list, we proceed to recompute their points-to values.

The points-to values are recomputed using a flow
based algorithm. Figure 7 shows the pseudo-code ver-



sion of our points-to algorithm, including helper func-
tions. For standard nodes and edges, it works by recur-
sively following all reverse flow edges leaving a node
until it reaches a heap node. If a cycle is detected, that
recursion fork is killed as all nodes in that cycle will point
to the same thing and that is being discovered by the
other recursion forks. Since flows are created to argu-
ment nodes when functions are called, this flow analysis
will pass through function boundaries.

Field nodes and argument nodes require special atten-
tion. Since these nodes can be indirectly aliased by ac-
cessing them through their parent object, they might not
have direct flows to all their aliases. When a field node is
reached in our algorithm, all the aliases of this field node
are discovered, and all edges leaving them are added to
our flow exploration. This is done by recording the name
of the field for the current field node, finding all aliases
of the parent to the field node, and getting their copy
of a field node representing the field we are interested
in. In essence, we are popping up one level in our flow
graph, finding all aliases of this node, and descending
these aliases to reach an alias of our field node. This
process may be repeated recursively if the parent of a
field node is itself a field node. The exact same proce-
dure is done for argument nodes for the case when func-
tion aliases are made.

Note that the full analysis is a special, albeit more in-
efficient, case of the staged analysis where the invalid
worklist is set to be all nodes in the graph GN . Figure 7
shows pseudo-code for computing points-to values for a
particular graph node n.

4.5 Queries
The points-to information is essentially a mapping from
variable to heap locations. Users can take advantage
of this mapping to run queries against the program be-
ing loaded. In this paper, we explore two representative
queries and show how they can be expressed and resolv-
ing using points-to results.

Not calling alert. It might be undesirable to bring up
popup boxes, especially in library code designed to be
integrated into large Web sites. This is typically accom-
plished with function alert in JavaScript. This query
checks for the presence of alert calls.

Not calling setInterval with a dynamic function pa-
rameter. In JavaScript, setInterval is one of the dy-
namic code execution constructs that may be used to in-
voke arbitrary JavaScript code. This “cousin of eval”
may be used as follows:

setInterval(

new Function(

"document.location=’http://evil.com’;"),

500);

In this case, the first parameter is dynamically con-
structed function that will be passed to the JavaScript
interpreter for execution. Alternatively, it may be a ref-
erence to a function statically defined in the code. In
order to prevent arbitrary code injection and simplify
analysis, it is desirable to limit the first parameter of
setInterval to be a statically defined function, not a
dynamically constructed function.

Figure 8 shows our formulation of the queries. The
detect-alert-calls query looks for any calls to
alert. It does this by first finding all the nodes
that point to alert, then examining them to see if
they are called (which is determined during normaliza-
tion). The detect-set-interval-calls is somewhat
more complicated. It cares if setInterval is called,
but only if the first parameter comes from the return
value of the Function constructor. So, all the source
nodes from edges entering the first argument’s node in
setInterval must be examined to see if it has an edge
to the return node of the Function constructor. In ad-
dition, all aliases of these nodes must also be examined
to see if they have a flow edge to the return node of the
Function constructor.

The results to these queries are updated when updates
are made to the points-to information. This ensures that
the results are kept current on the client machine. A
policy is a set of queries and expected results to those
queries. A simple policy would be to disallow any calls
to alert, so it would expect detect-alert-calls from
Figure 8 to return false. If detect-alert-calls ever
returns true, the analysis engine could either notify the
user or stop the offending page from executing.

4.6 Other Uses of Static Analysis
In addition to the two queries detailed above, there are
many other uses that could be very useful. One other
useful query would be to use the points-to results to iden-
tify when updates to pages modify important global vari-
ables. The points-to results can be traversed to identify
when any aliases to global variables, like Array or com-
mon global library names, are modified which could lead
to unexpected behavior.

Another use of the staged static analysis is helping
to improve performance through optimization. Tradi-
tionally Just-In-Time (JIT) compilers have been used
to improve the performance of dynamic languages like
JavaScript [5]. These JITs have the benefit of actu-
ally seeing code paths during execution and optimizing
them, but they must run on the client and thus have some
amount of performance impact. Any complex analy-
sis done by a JIT would negatively affect performance,
which is what the JIT is trying to improve in the first
place. Performing some amount of static analysis be-



detect-alert-calls()
1: nodes = reversePointsTo[alertΓ]
2: for all n ∈ nodes do
3: if n.isCalled() then
4: return true
5: end if
6: end for
7: return false

detect-set-interval-calls()
1: n = setIntervalΓ.arg1
2: for all edge e entering n do
3: if e.src == FunctionΓ.return then
4: return true
5: else
6: p = p ∪ find-all-aliases(e.src)
7: end if
8: end for
9: for all node n2 in p do

10: for all edge e2 entering n2 do
11: if e2.src == FunctionΓ.return then
12: return true
13: end if
14: end for
15: end for

find-all-aliases(node)
1: aliases = empty
2: heapNodes = pointsTo[node]
3: for all n ∈ heapNodes do
4: aliases = aliases ∪ reversePointsTo[n]
5: end for
6: return aliases

Figure 8: Queries detect-alert-calls and detect-set-interval-calls.

fore running JavaScript through a JIT could empower the
JIT to better optimize code [18]. GULFSTREAM would
permit this without having to do an expensive analysis
while the JIT is running. GULFSTREAM is especially
well suited to this situation because the majority of the
staged analysis is done offline and only updates to the
code are analyzed on the client. Static analysis enables
many analyses that can be semantically driven rather than
syntactically driven and possibly fragile.
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Figure 9: Trend lines for running times for full and staged analyses as
well as the bddbddb-based implementation

5 Experimental Evaluation

This section is organized as follows. We first discuss
analysis time and the space required to represent analy-
sis results in Sections 5.1 and 5.2. Section 5.3 explores
the tradeoff between computing results on the client and
transferring them over the wire.

Measurements reported in this paper were performed
on a MacBook Pro 2.4 GHz Dual Core machine running
Windows 7. The JavaScript files we used during testing
were a mix of hand crafted test files, procedurally gener-
ated files, and files obtained from Google code search,
looking for JavaScript files. GULFSTREAM uses two
bootstrap JavaScript files. The first introduces the native
environment, where Object, Array, and other globals
are defined. The second introduces a set of browser-
provided globals such as document and window. To-
gether these files are approximately 30 KB in size.

5.1 Analysis Running Time
Figure 9 shows full, staged and the bddbddb-based
analyses on the same scale . For this experiment, we
used our bootstrap file for the base in the staged analy-
sis. We ran various sized JavaScript files through the
full, staged, and bddbddb-based analyses. The full and
bddbddb-based analyses processed the JavaScript file
concatenated with the bootstrap file. The staged analysis
processed the JavaScript file as an update to the already
computed analysis on the bootstrap file.

We see that staged analysis is consistently faster than
full analysis. In the cases of smaller code updates, the
difference in running times can be as significant as a
couple of orders of magnitude. We also see that for
small updates, the staged analysis performs better than
the bddbddb-based analysis. This is encouraging: it
means that we can implement the staged analysis within
the browser without the need for heavyweight BDD ma-
chinery, without sacrificing performance in the process.
In the next section, we show that our space overhead is
also generally less than that of BDDs.

5.2 Space Considerations
Figure 10 shows the sizes of three representations for
points-to analysis results and how they compare to each
other. The representations are DOT, the text-based graph
format used by the Graphviz family of tools, bddbddb,
a compact, BDD-based representation, as well as BIN,
our graph representation described in Section 4.3. All
numbers presented in the figure are after applying the
industry-standard gzip compression.

We were not surprised to discover that the DOT ver-
sion is most verbose. To our surprise, our simple binary
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Figure 10: Trend lines for pointer analysis graph size as a function of
the input JavaScript file size (gzip-ed).

format beats the compact bddbddb format in most cases,
making us believe that a lightweight staged analysis im-
plementation is a good candidate for being integrated
within a Web browser.

5.3 Staged vs. Full Analysis Tradeoff
To fully explore the tradeoff between computing the full
analysis on the client and computing part of the analy-
sis on the server and transferring it over the wire to the
client, we consider 10 device configurations. These con-
figuration vary significantly in terms of the CPU speed as
well as network connectivity parameters. We believe that
these cover a wide range of devices available today, from
the most underpowered: mobile phones connected over a
slow EDGE network, to the fastest: desktops connected
over a T1 link.

A summary of information about the 10 device config-
urations is shown in Figure 11. We based our estimates
of CPU multipliers on a report comparing the perfor-
mance of SunSpider benchmarks on a variety of mobile,
laptop, and desktop devices [1]. While not necessarily
representative of Web 2.0 application performance [23],
we believe these benchmark numbers to be a reasonable
proxy for the computing capacity of a particular device.

We compare between two options: 1) performing full
analysis on the client and 2) transferring a partial result
over the wire and performing the staged analysis on the
client. The equation below summarizes this comparison.
On the left is the overall time for the full analysis and on
the right is the overall time for the staged analysis. B is
the bandwidth, L is the latency, b is the main page size, ∆
is the incremental JavaScript update size, size is the size
of the points-to data needed to run the staged analysis,
and F and I are the full and staged analysis times re-
spectively. c is the CPU coefficient from Figure 11:

c× F (b + ∆) ? L +
size

B
+ c× I(∆)

Configuration CPU Link Latency Bandwidth
ID Name coef. c type L in ms B in kbps

1 G1 67.0 EDGE 500 2.5
2 Palm Pre 36.0 Slow 3G 500 3.75
3 iPhone 3G 36.0 Fast 3G 300 12.5
4 iPhone 3GS 3G 15.0 Slow 3G 500 3.75
5 iPhone 3GS WiFi 15.0 Fast WiFi 10 75.0

6 MacBook Pro 3G 1 Slow 3G 500 3.75
7 MacBook Pro WiFi 1 Slow WiFi 100 12.5
8 Netbook 2.0 Fast 3G 300 12.5
9 Desktop WiFi 0.8 Slow WiFi 100 12.5
10 Desktop T1 0.8 T1 5 1,250.0

Figure 11: Device settings used for experiments across CPU speeds
and network parameters. Devices are roughly ordered in by comput-
ing and network capacity. Configurations 1–5 correspond to a mobile
setting; configurations 6–10 describe a desktop setting.

Figure 12 summarizes the results of this comparison over
our range of 10 configurations. The code analyzed at
the server is the bootstrap code from before. There-
fore, the points-to data sent to the client was always the
same while the size of the incremental code update var-

Incremental Configuration (from Figure 11)
size 1 2 3 4 5 6 7 8 9 10

88 + + + + + - + + - +
619 + + + + + - + + - +

1,138 + + + + + - + + - +
1,644 + + + + + - - + - +
2,186 + + + + + - - + - +
2,767 + + + + + - - + - +
3,293 + + + + + - - + - +
3,846 + + + + + - - + - +
4,406 + + + + + - - - - +
5,008 + + + + + - - + - +
5,559 + + + + + - - + - +
6,087 + + + + + - - + - +
6,668 + + + + + - - + - +
7,249 + + + + + - - + - +
7,830 + + + + + - - + - +
8,333 + + + + + - - + - +
8,861 + + + + + - - - - +
9,389 + + + + + - - - - +
9,917 + + + + + - - - - +

10,445 + + + + + - - - - +
10,973 + + + + + - - - - +
11,501 + + + + + - - - - +
12,029 + + + + + - - - - +
12,557 + + + - + - - - - +
14,816 + + + + + - + + + +
16,485 - - - - - - - - - -
17,103 + + + + + - - - - +
17,909 - - - - - - - - - -
20,197 - - - - - - - - - -
25,566 - - - - - - - - - -
31,465 - - - - - - - - - -
37,689 - - - - - - - - - -
38,986 - - - - - - - - - -
57,254 + + + + + - - + - +
77,074 + + + + + - + + - +

124,136 - - - - - - - - - -
129,739 - - - - - - - - - -

Figure 12: Analysis tradeoff in different environments. “+” means that
staged incremental analysis is advantageous compared to full analysis
on the client.



Page Lines of code Analysis time (seconds) Full/
Total Inc. Inc. Full bddbddb bddbddb

home 965 339 591 599 4 148
friends 1,274 309 1,297 1,866 6 324
inbox 1,291 17 800 1,840 6 313
profile 1,308 17 851 4,180 6 716

Figure 13: Analysis times for an incrementally loading site (Face-
book.com). Each page sends an update to the JavaScript that adds to
the previous page’s JavaScript.

ied. A + in the table indicates that staged analysis is
faster. Overall, we see that for all configurations ex-
cept 6, 7, and 9, staged analysis is generally the right
strategy. “High-end” configurations 6, 7, and 9 have the
distinction of having a relatively fast CPU and a slow
network; clearly, in this case, computing analysis results
from scratch is better than waiting for them to arrive over
the wire. Unsurprisingly, the staged approach advocate
by GULFSTREAM excels on mobile devices and under-
powered laptops. Given the growing popularity of Web-
connected mobile devices, we believe that the staged
analysis approach advocated in this paper will become
increasingly important in the future.

5.4 Facebook Analysis Experiment
Thus far, we have shown how GULFSTREAM performs
when run on smaller JavaScript fragments, chosen to
simulate incremental code updates of varying sizes. To
see how GULFSTREAM handles a real incrementally
loading JavaScript program, we captured an interactive
session of Facebook usage. JavaScript code was incre-
mentally loaded as the user interacted with the page.
We fed each JavaScript update through GULFSTREAM to
simulate a user navigating Facebook with GULFSTREAM
updating analysis results, as more JavaScript is loaded
into the browser.

The navigation session we recorded and used com-
prises a particular interaction with the main Facebook
page. We were careful to use actions such as link clicks
that do not take the user away from the current page (that
would create a new, clean JavaScript engine context).
The recorded interaction is clicking several links in a row
that keeps the user at the same page. The user starts at the
homepage where a large amount of JavaScript is down-
loaded. Then the user clicks on their friends link, which
causes more JavaScript to be downloaded and the page to
be updated. The same happens when the user then clicks
on their inbox link, and their profile link. These four
pages: the homepage, friends, inbox, and profile make
up our Facebook staged analysis experiment.

In the experiment, each of the four pages was
processed by the staged analysis, the full analysis, and
the bddbddb analysis. For the staged analysis, the code
from the initial page was considered an incremental up-

date upon the bootstrap JavaScript that includes our na-
tive environment definition and our browser environment
definition. Then in all subsequent pages, the code down-
loaded for that page was considered an incremental up-
date upon the already computed results from the previ-
ous page. For the full analysis and the bddbddb analysis,
each of the four pages was analyzed in isolation.

Figure 13 contains the sizes of the pages used in this
experiment. The lines of code reported is the line count
from the files as they are when downloaded. Note that in
many cases, code includes long eval statements that ex-
pand to many hundreds to thousands of lines of code. For
example, the incremental part of the first page expands to
over 15,000 lines of code and the incremental part of the
last page expands to over 1,400 lines of code.

The goal for the staged analysis is to perform updates
to the analysis faster than it takes to recompute the en-
tire analysis. This is highly desirable since the updates
in this case are small and rerunning a full analysis to an-
alyze just a few new lines of code is highly wasteful. Fig-
ure 13 confirms this intuition by comparing staged analy-
sis against full analysis. Additionally Figure 14 shows
the time savings in seconds for each of the device and
network configurations from Figure 11. In every config-
uration the staged analysis fares better, leading to savings
on the order of 5 minutes or more.

However, the bddbddb full analysis outperforms the
staged analysis by several orders of magnitude, as shown
in the last column in Figure 13. This is because the
bddbddb analysis solver is highly optimized to scale well
and because of our choice of an efficient variable order
for BDD processing [25]. While this experiment shows
that our staged analysis is better than our full analysis,
it also shows that the highly optimized bddbddb-based
technique is significantly better for analyzing the code
quickly; this is in line with what has been previously ob-
served for Java and C, when comparing declarative vs.
hand-written implementations. It should also be noted
that the JavaScript for these pages is more complex than
in our hand-crafted and procedurally generated files used
for other experiments, which produces more complex
constraints and favors the more scalable bddbddb-based
approach. However, running a highly optimized Datalog
solver such as bddbddb within the browser might prove
cumbersome for other reasons such as the size and com-
plexity of the code added to the browser code base.

6 Related Work

In this section, we focus on static and runtime analysis
approaches for JavaScript.



Configuration (from Figure 11)
Page 1 2 3 4 5 6 7 8 9 10
home 541 290 291 119 121 5 7 15 5 6
friends 38,083 20,460 20,469 8,516 8,530 554 564 1,133 450 454
inbox 69,685 37,439 37,451 15,589 15,606 1,022 1,035 2,075 827 832
profile 223,029 119,833 119,845 49,920 49,937 3,311 3,323 6,652 2,658 2,663

Figure 14: Time savings in ms from using staged analysis compared to full analysis on Facebook pages (device and network settings are from
Figure 11).

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it
difficult to reason about programs written in it. How-
ever, with certain expressiveness restrictions, desirable
security properties can be achieved. ADSafe and Face-
book both implement a form of static checking to en-
sure a form of safety in JavaScript code. ADSafe [10]
disallows dynamic content, such as eval, and performs
static checking to ensure the JavaScript in question is
safe. Facebook uses a JavaScript language variant called
FBJS [12], that is like JavaScript in many ways, but
DOM access is restricted and all variable names are pre-
fixed with a unique identifier to prevent name clashes.

A project by Chugh et al. focuses on staged analy-
sis of JavaScript and finding information flow viola-
tions in client-side code [8]. Chugh et al. focus on
information flow properties such as reading document
cookies and changing the locations. A valuable fea-
ture of that work is its support for dynamically loaded
and generated JavaScript in the context of what is gen-
erally thought of as whole-program analysis. Gate-
keeper project [14] proposes a points-to analysis based
on bddbddb together with a range of queries for security
and reliability. GULFSTREAM is in many way a succes-
sor of the Gatekeeper project; while the formalism and
analysis approaches are similar, GULFSTREAM’s focus
is on staged analysis.

Researchers have noticed that a more useful type sys-
tem in JavaScript could prevent errors or safety viola-
tions. Since JavaScript does not have a rich type system
to begin with, the work here is devising a correct type
system for JavaScript and then building on the proposed
type system. Soft typing [7] might be one of the more
logical first steps in a type system for JavaScript. Much
like dynamic rewriters insert code that must be executed
to ensure safety, soft typing must insert runtime checks
to ensure type safety.

Other work has been done to devise a static type
system that describes the JavaScript language [3, 4, 24].
These works focus on a subset of JavaScript and provide
sound type systems and semantics for their restricted
subsets of JavaScript. As far as we can tell, none of these
approaches have been applied to realistic bodies of code.
GULFSTREAM uses a pointer analysis to reason about
the JavaScript program in contrast to the type systems

and analyses of these works. We feel that the ability to
reason about pointers and the program call graph allows
us to express more interesting security policies than we
would be able otherwise.

This work presents staged analysis done on the client’s
machine to perform analysis on JavaScript that is loaded
as the user interacts with the page. A similar problem is
present in Java with dynamic code loading and reflec-
tion. Hirzel et al. solved this problem with a offline-
online algorithm [15]. The analysis has two phases, an
offline phase that is done on statically known content,
and an online phase done when new code is introduced
while the program is running. They utilize their pointer
analysis results in the JIT. We use a similar offline-online
analysis to compute information about statically known
code, then perform an online analysis when more code
is loaded. To our knowledge, GULFSTREAM is the first
project to perform staged static analysis on multiple tiers.

6.2 Rewriting and Instrumentation
A practical alternative to static language restrictions is
instrumentation. Caja [22] is one such attempt at lim-
iting capabilities of JavaScript programs and enforcing
this through the use of runtime checks. WebSandbox is
another project with similar goals that also attempts to
enforce reliability and resource restrictions in addition to
security properties [20].

Yu et al. [26] traverse the JavaScript document and
rewrite based on a security policy. Unlike Caja and
WebSandbox, they prove the correctness of their rewrit-
ing with operational semantics for a subset of JavaScript
called CoreScript. Instrumentation can be used for more
than just enforcing security policies. AjaxScope [17]
rewrites JavaScript to insert instrumentation that sends
runtime information, such as error reporting and memory
leak detection, back to the content provider. Static analy-
sis may often be used to reduce the amount of instrumen-
tation, both in the case of enforcement techniques such
as ConScript [19] and regular code execution.

7 Conclusions

Static analysis is a useful technique for applications rang-
ing from program optimization to bug finding. This pa-
per explores staged static analysis as a way to analyze



streaming JavaScript programs. In particular, we advo-
cate the use of combined offline-online static analysis as
a way to accomplish fast, online analysis at the expense
of a more thorough and costly offline analysis on the sta-
tic code. The offline stage may be performed on a server
ahead of time, whereas the online analysis would be inte-
grated into the web browser. Through a wide range of ex-
periments on both synthetic and real-life JavaScript code,
we find that in normal use, where updates to the code are
small, we can update static analysis results within the
browser quickly enough to be acceptable for everyday
use. We demonstrate this form of staged analysis ap-
proach to be advantageous in a wide variety of settings,
especially in the context of mobile devices.

References

[1] Ajaxian. iPhone 3GS runs faster than claims, if you go by
SunSpider. http://bit.ly/RHHgO, June 2009.

[2] L. O. Andersen. Program analysis and specialization for
the C programming language. Technical report, Univer-
sity of Copenhagen, 1994.

[3] C. Anderson and P. Giannini. Type checking for
JavaScript. In In WOOD 04, volume WOOD
of ENTCS. Elsevier, 2004. http://www.binarylord.com/
work/js0wood.pdf, 2004.

[4] C. Anderson, P. Giannini, and S. Drossopoulou. To-
wards type inference for JavaScript. In Proceedings of the
European Conference on Object-Oriented Programming,
pages 429–452, July 2005.

[5] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. SPUR: A trace-
based JIT compiler for CIL. Technical Report MSR-TR-
2010-27, Microsoft Research, March 2010.

[6] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Uma-
nee. Points-to analysis using BDDs. In Proceedings of
the Conference on Programming Language Design and
Implementation, pages 103–114, 2003.

[7] R. Cartwright and M. Fagan. Soft typing. ACM SIGPLAN
Notices, 39(4):412–428, 2004.

[8] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In Proceedings of the
Conference on Programming Language Design and Im-
plementation, June 2009.

[9] D. Crockford. The JavaScript code quality tool. http:

//www.jslint.com/, 2002.

[10] D. Crockford. AdSafe: Making JavaScript safe for adver-
tising. http://www.adsafe.org, 2009.

[11] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and
G. Woodhull. Graphviz - open source graph drawing
tools. Graph Drawing, pages 483–484, 2001.

[12] Facebook, Inc. FBJS. http://wiki.developers.

facebook.com/index.php/FBJS, 2007.

[13] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Man-
delin, M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky,
J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier,
M. Bebenita, M. Chang, and M. Franz. Trace-based
just-in-time type specialization for dynamic languages.
In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 465–478, 2009.

[14] S. Guarnieri and B. Livshits. Gatekeeper: Mostly sta-
tic enforcement of security and reliability policies for
JavaScript code. In Proceedings of the Usenix Security
Symposium, Aug. 2009.

[15] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind.
Fast online pointer analysis. ACM Trans. Program. Lang.
Syst., 29(2):11, 2007.

[16] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis
for JavaScript. In Proceedings of the International Sta-
tic Analysis Symposium, volume 5673 of LNCS. Springer-
Verlag, August 2009.

[17] E. Kıcıman and B. Livshits. AjaxScope: a platform for
remotely monitoring the client-side behavior of Web 2.0
applications. In Proceedings of Symposium on Operating
Systems Principles, Oct. 2007.

[18] F. Logozzo and H. Venter. RATA: Rapid atomic
type analysis by abstract interpretation- application to
JavaScript optimization. In Proceedings of the Interna-
tional Conference on Compiler Construction, pages 66–
83, 2010.

[19] L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for Javascript
in the browser. In IEEE Symposium on Security and Pri-
vacy, May 2010.

[20] Microsoft Live Labs. Live Labs Websandbox. http:

//websandbox.org, 2008.

[21] A. Milanova, A. Rountev, and B. G. Ryder. Precise call
graphs for C programs with function pointers. Automated
Software Engineering, 11(1):7–26, 2004.

[22] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
JavaScript. http://google-caja.googlecode.com/

files/caja-2007.pdf, 2007.

[23] P. Ratanaworabhan, B. Livshits, and B. Zorn. JSMeter:
Comparing the behavior of JavaScript benchmarks with
real Web applications. In Proceedings of the USENIX
Conference on Web Application Development, June 2010.

[24] P. Thiemann. Towards a type system for analyzing
JavaScript programs. European Symposium On Program-
ming, 2005.

[25] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using
Datalog and binary decision diagrams for program analy-
sis. In Proceedings of the Asian Symposium on Program-
ming Languages and Systems, Nov. 2005.

[26] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. In Proceedings of
Conference on Principles of Programming Languages,
Jan. 2007.


